Chinese Optics Letters, 2023, 21 (11): 113602, Published Online: Nov. 13, 2023
Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory
chiral metasurface linear polarization conversion asymmetric transmission Fabry–Perot-like resonance electromagnetic interference model
Abstract
In this paper, we propose an ultrabroadband chiral metasurface (CMS) composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate. This innovative structure enables ultrabroadband and high-efficiency linear polarization (LP) conversion, as well as asymmetric transmission (AT) effect in the microwave region. The enhanced interference effect of the Fabry–Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect. Through numerical simulations, it has been revealed that the cross-polarization transmission coefficients for normal forward (-z) and backward (+z) incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz, accompanied by a polarization conversion ratio of over 99%. Furthermore, our microwave experimental results validate the consistency among simulation, theory, and measurement. Additionally, we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles, total transmittance, AT coefficient, and electric field distribution. The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar, remote sensing, and satellite communication.
Jingcheng Zhao, Nan Li, Yongzhi Cheng. Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory[J]. Chinese Optics Letters, 2023, 21(11): 113602.