半导体光电, 2022, 43 (6): 1020, 网络出版: 2023-01-27  

石墨烯/硅基异质集成光电子器件

Integrated Optoelectronic Devices Based on the Hybrid Integration of Silicon and Graphene
作者单位
华中科技大学 光学与电子信息学院, 武汉 430074
摘要

石墨烯/硅基异质集成的光子器件研究在近年来取得了巨大进展, 因石墨烯所具有的诸多独特的物理性质如超高载流子迁移率、超高非线性系数等, 石墨烯/硅基异质集成器件展现出了诸如超大带宽、超低功耗等优异性能。文章介绍了近年来报道的典型石墨烯/硅基异质集成器件, 包括石墨烯/硅基电光调制器、石墨烯/硅基热光调制器和石墨烯/硅基光电探测器, 简要阐述了其原理与性能, 并对其未来的应用与发展做出了展望。

Abstract

The research on graphene/silicon-based hetero-integrated photonic devices has made great progress in recent years. The graphene/silicon-based heterogeneous integrated devices have shown excellent performance such as ultra-large bandwidth and ultra-low power consumption thanks to the unique physical properties of graphene, such as ultra-high carrier mobility and ultra-high nonlinear coefficient. In this work, we reviewed the typical graphene/silicon-based heterogeneous integrated devices reported in recent years, including graphene/silicon-based electro-optical modulators, graphene/silicon-based thermo-optical modulators and graphene/silicon-based photodetectors, briefly described their principles and properties, and made a prospect for their future applications and development.

参考文献

[1] Xiao D, Ramsay E, Reid D T, et al. Optical probing of a silicon integrated circuit using electric-field-induced second-harmonic generation[J]. Appl. Phys. Lett., 2006, 88(11): 60-64.

[2] Dadap J I, Shan J, Weling A S, et al. Measurement of the vector character of electric fields by optical second-harmonic generation[J]. Opt. Lett., 1999, 24(15): 1059-1061.

[3] Soref R. The past, present, and future of silicon photonics[J]. IEEE J. of Sel. Top. in Quantum Electron., 2006, 12(6): 1678-1687.

[4] Asghari M. Krishnamoorthy A. Silicon photonics: energy-efficient communication[J]. Nature Photon., 2011(5): 268-270.

[5] Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nature Photon., 2010(4): 492-494.

[6] Armstrong J A. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

[7] Zhu Xiaolong, Shi Lei, Schmidt M S, et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays[J]. Nano Lett., 2013, 13(10): 4690-4696.

[8] Gu T. Photonic and plasmonic guided modes in graphene-silicon photonic crystals[J]. ACS Photonics, 2015, 2(11): 1552-1558.

[9] Gu T, Petrone N, McMillan J F, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics[J]. Nature Photonics, 2012, (6): 554-559.

[10] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 22(5696): 666-669.

[11] Bunch J S, Van A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.

[12] Kim J T, Chung K H, Choi C G. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide[J]. Opt. Express, 2013, 21(13): 15280-15286.

[13] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in grapheme[J]. Science, 2008, 320(5873): 206-209.

[14] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[15] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(57): 487-496.

[16] Vakil A, Enheta N. Transformation optics using grapheme[J]. Science, 2011, 332(6035): 487-494.

[17] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-387.

[18] Ferrari A C, Francesco B, Vladimir Fal′ko, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598-4810.

[19] Reed G T, Mashanovich G, Gardes F, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4: 518-526.

[20] Timurdogan E, Sorace-Agaskar C M, Sun J, et al. An ultralow power athermal silicon modulator[J]. Nature Communications, 2014, 5(1): 4008.

[21] Kang J, Kim H, Kim K S, et al. High-performance graphene-based transparent flexible heaters[J]. Nano Lett., 2011, 11(12): 5154-5158.

[22] Sherwood-Droz N, Wang H, Chen L, et al. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)[J]. Opt. Express, 2008, 20(16): 15915-15922.

[23] Gu L, Jiang W, Chen X, et al. Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach-Zehnder interferometers[J]. IEEE Photon. Technol. Lett., 2007, 19(5): 342.

[24] Dong Po, Qian Wei, Liang Hong, et al. Thermally tunable silicon racetrack resonators with ultralow tuning power[J]. Opt. Express, 2010, 18(19): 20298-20304.

[25] Sun P, Reano R M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides[J]. Opt. Express, 2010, 18(8): 8406-8411.

[26] Kang J, Kim H, Kim K S, et al. High-performance graphene-based transparent flexible heaters[J]. Nano Lett., 2011, 11(12): 5154-5158.

[27] Gan S, Cheng C T, Zhan Y H, et al. A highly efficient thermo-optic microring modulator assisted by graphene[J]. Nanoscale, 2015, 7(47): 20249-20255.

[28] Yu L, Yin Y, Shi Y, et al. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters[J]. Optica, 2016, 3(2): 159-166.

[29] Yan S, Zhu X, Frandsen L, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides[J]. Nature Communications, 2017, 8(1): 14411.

[30] Soref R, Bennett B R. Electrooptical effects in silicon[J]. IEEE J. of Quantum Electron., 1987, 23(1): 123-129.

[31] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495.

[32] Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040): 325-327.

[33] Chang Y C, Liu C H, Zhong Z H, et al. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry[J]. Appl. Phys. Lett., 2014, 104(26): 261909.1-261909.4.

[34] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[35] Ding Y, Zhu X, Xiao S, et al. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator[J]. Nano Lett., 2015, 15(7): 4393-4400.

[36] Phare C, Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

[37] Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth[J]. Nature Photonics, 2018, 12(1): 40-44.

[38] Luan C, Liu Y, Kong D, et al. Integrated 2μm electro-optic modulator based on grapheme-silicon slot-waveguide microring resonator[C]// 2022 Conf. on Lasers and Electro-Optics (CLEO), 2022.

[39] Jalali B, Fathpour S. Silicon photonics[J]. J. of Lightwave Technol., 2007, 24(12): 4600-4615.

[40] Casalino M, Lodice M, Sirleto L, et al. Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current[J]. Opt. Express, 2013, 21(23): 28072-28082.

[41] Goykhman I, Desiatov B, Khurgin J B, et al. Locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths[C]// IEEE Inter. Conf. on Group Ⅳ Photonics, 2011: 34-37.

[42] Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.

[43] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

[44] Wang X, Cheng Z, Xu K, et al. High responsivity graphene/silicon heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891.

[45] Liu N, Tian H, Schwartz G, et al. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene[J]. Nano Lett., 2014, 14(7): 3702-3708.

[46] Feng B, Pan X, Liu T, et al. A broadband photoelectronic detector in a silicon nanopillar array with high detectivity enhanced by a monolayer graphene[J]. Nano Lett., 2021, 21(13): 5655-5662.

[47] Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

[48] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7): 472-478.

[49] Engel M, Steiner M, Lombardo A, et al. Light-matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3(1): 1-6.

[50] Wang Y B, Yin W H, Han Q, et al. Bolometric effect in a waveguide-integrated graphene photodetector[J]. Chinese Physics B, 2016, 25(11): 118103.

[51] Gabor N M, Song J, Ma Q, et al. Hot carrier-assisted intrinsic photo-response in graphene[J]. Science, 2011, 334(6056): 648-652.

[52] Song J C, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Lett., 2011, 11(11): 4688-4692.

[53] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Lett., 2010, 10(2): 562-566.

[54] Lemme M C, Koppens F, Falk A L, et al. Gate-activated photo-response in a graphene p-n junction[J]. Nano Lett., 2010, 11(10): 4134-4137.

[55] Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Lett., 2013, 13(4): 1644-1648.

[56] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4(7): 1987.

[57] Wang D, Allcca A E L, Chung T F, et al. Enhancing the graphene photocurrent using surface plasmons and a p-n junction[J]. Light: Science & Applications, 2020, 9(1): 126.

[58] Gosciniak J, Rasras M, Khurgin J B. Ultrafast plasmonic graphene photodetector based on channel photo-thermoelectric effect[J]. ACS Photonics, 2020, 7(2): 488-498.

[59] Gan X, Mak K F, Gao Y, et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity[J]. Nano Lett., 2012, 12(11): 562-566.

[60] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

[61] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Lett., 2009, 9(3): 1039-1044.

[62] Hohenau A, Krenn J R, Beermann Jonas, et al. Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory[J]. Phys. Rev. B, 2006 , 6(73): 155404.

[63] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2011, 2(1): 57-59.

[64] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6): 366-371.

[65] Gao A, Liu E, Long M, et al. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures[J]. Appl. Phys. Lett., 2016, 9(22): 223501.1-223501.5.

[66] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 9(7): 363-368.

彭文怡, 严思琦, 唐明. 石墨烯/硅基异质集成光电子器件[J]. 半导体光电, 2022, 43(6): 1020. PENG Wenyi, YAN Siqi, TANG Ming. Integrated Optoelectronic Devices Based on the Hybrid Integration of Silicon and Graphene[J]. Semiconductor Optoelectronics, 2022, 43(6): 1020.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!