Advanced Photonics, 2020, 2 (6): 066001, Published Online: Oct. 23, 2020  

Extreme events in quantum cascade lasers Download: 735次

Author Affiliations
1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
2 mirSense, Centre d’Intégration NanoInnov, Palaiseau, France
3 University of California Los Angeles, Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, Los Angeles, California, United States
4 Southwest University, College of Electronic and Information Engineering, Chongqing, China
5 Technische Universität Darmstadt, Darmstadt, Germany
6 University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Copy Citation Text

Olivier Spitz, Jiagui Wu, Andreas Herdt, Grégory Maisons, Mathieu Carras, Wolfgang Elsäßer, Chee-Wei Wong, Frédéric Grillot. Extreme events in quantum cascade lasers[J]. Advanced Photonics, 2020, 2(6): 066001.


[1] A. Toffoli, et al.. Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current. Nat. Hazards Earth Syst. Sci., 2011, 11(3): 895-903.

[2] H. L. D. S. Cavalcante, et al.. Predictability and suppression of extreme events in a chaotic system. Phys. Rev. Lett., 2013, 111(19): 198701.

[3] T. C. Peterson, P. A. Stott, S. Herring. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc., 2012, 93(7): 1041-1067.

[4] N. S. Frolov, et al.. Statistical properties and predictability of extreme epileptic events. Sci. Rep., 2019, 9(1): 7243.

[5] S. Bialonski, G. Ansmann, H. Kantz. Data-driven prediction and prevention of extreme events in a spatially extended excitable system. Phys. Rev. E, 2015, 92(4): 042910.

[6] N. Akhmediev, et al.. Roadmap on optical rogue waves and extreme events. J. Opt., 2016, 18(6): 063001.

[7] C. Bonatto, et al.. Deterministic optical rogue waves. Phys. Rev. Lett., 2011, 107(5): 053901.

[8] D. Solli, et al.. Optical rogue waves. Nature, 2007, 450(7172): 1054-1057.

[9] C. Liu, et al.. Triggering extreme events at the nanoscale in photonic seas. Nat. Phys., 2015, 11(4): 358-363.

[10] R. Höhmann, et al.. Freak waves in the linear regime: a microwave study. Phys. Rev. Lett., 2010, 104(9): 093901.

[11] V. Makarov, V. Nekorkin, M. Velarde. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Phys. Rev. Lett., 2001, 86(15): 3431-3434.

[12] E. Viktorov, T. Erneux. Self-sustained pulsations in a quantum-dot laser. Phys. Rev. E, 2014, 90(5): 052914.

[13] S.-S. Lin, S.-K. Hwang, J.-M. Liu. High-power noise-like pulse generation using a 1.56-μm all-fiber laser system. Opt. Express, 2015, 23(14): 18256-18268.

[14] A. Montina, et al.. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett., 2009, 103(17): 173901.

[15] A. K. Dal Bosco, D. Wolfersberger, M. Sciamanna. Extreme events in time-delayed nonlinear optics. Opt. Lett., 2013, 38(5): 703-705.

[16] D. Choi, et al.. Low-frequency fluctuations in an external-cavity laser leading to extreme events. Phys. Rev. E, 2016, 93(4): 042216.

[17] M. G. Kovalsky, A. A. Hnilo, J. R. Tredicce. Extreme events in the Ti: sapphire laser. Opt. Lett., 2011, 36(22): 4449-4451.

[18] S. Perrone, et al.. Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation. Phys. Rev. A, 2014, 89(3): 033804.

[19] R. Karnatak, et al.. Route to extreme events in excitable systems. Phys. Rev. E, 2014, 90(2): 022917.

[20] O. Spitz, et al.. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Phys. Lett., 2018, 15(11): 116201.

[21] J. Faist, et al.. Quantum cascade laser. Science, 1994, 264(5158): 553-556.

[22] M. S. Vitiello, et al.. Quantum cascade lasers: 20 years of challenges. Opt. Express, 2015, 23(4): 5167-5182.

[23] H. D. Tholl. Review and prospects of optical countermeasure technologies. Proc. SPIE, 2018, 10797: 1079702.

[24] X. Pang, et al.. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Opt. Lett., 2017, 42(18): 3646-3649.

[25] A. G. Davies, et al.. Terahertz spectroscopy of explosives and drugs. Mater. Today, 2008, 11(3): 18-26.

[26] A. W. Lee, et al.. Real-time terahertz imaging over a standoff distance (>25  meters). Appl. Phys. Lett., 2006, 89(14): 141125.

[27] L. Jumpertz, et al.. Chaotic light at mid-infrared wavelength. Light Sci. Appl., 2016, 5(6): e16088.

[28] O. Spitz, et al.. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep., 2019, 9(1): 4451.

[29] N. Yu, et al.. Coherent coupling of multiple transverse modes in quantum cascade lasers. Phys. Rev. Lett., 2009, 102(1): 013901.

[30] A. K. Wójcik, et al.. Self-synchronization of laser modes and multistability in quantum cascade lasers. Phys. Rev. Lett., 2011, 106(13): 133902.

[31] S. Sauvage, et al.. Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Phys. Rev. B, 1999, 59(15): 9830-9833.

[32] P. Friedli, et al.. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett., 2013, 102(22): 222104.

[33] A. Delga, L. Leviandier. Free-space optical communications with quantum cascade lasers. Proc. SPIE, 2019, 10926: 1092617.

[34] K. Schires, et al.. Rare disruptive events in polarisation-resolved dynamics of optically injected 1550 nm VCSELs. Electron. Lett., 2012, 48(14): 872-874.

[35] J. Zamora-Munt, et al.. Rogue waves in optically injected lasers: origin, predictability, and suppression. Phys. Rev. A, 2013, 87(3): 035802.

[36] M. Turconi, et al.. Control of excitable pulses in an injection-locked semiconductor laser. Phys. Rev. E, 2013, 88(2): 022923.

[37] A. Hurtado, J. Javaloyes. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl. Phys. Lett., 2015, 107(24): 241103.

[38] N. M. Alvarez, S. Borkar, C. Masoller. Predictability of extreme intensity pulses in optically injected semiconductor lasers. Eur. Phys. J. Spec. Top., 2017, 226(9): 1971-1977.

[39] T. Jin, C. Siyu, C. Masoller. Generation of extreme pulses on demand in semiconductor lasers with optical injection. Opt. Express, 2017, 25(25): 31326-31336.

[40] J. A. Reinoso, J. Zamora-Munt, C. Masoller. Extreme intensity pulses in a semiconductor laser with a short external cavity. Phys. Rev. E, 2013, 87(6): 062913.

[41] C.-H. Uy, D. Rontani, M. Sciamanna. Vectorial extreme events in VCSEL polarization dynamics. Opt. Lett., 2017, 42(11): 2177-2180.

[42] É. Mercier, et al.. Numerical study of extreme events in a laser diode with phase-conjugate optical feedback. Phys. Rev. E, 2015, 91(4): 042914.

[43] M. W. Lee, et al.. Demonstration of optical rogue waves using a laser diode emitting at 980 nm and a fiber Bragg grating. Opt. Lett., 2016, 41(19): 4476-4479.

[44] A. Evans, et al.. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett., 2004, 84(3): 314-316.

[45] M. Carras, et al.. Top grating index-coupled distributed feedback quantum cascade lasers. Appl. Phys. Lett., 2008, 93(1): 011109.

[46] M. Carras, et al.. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett., 2010, 96(16): 161105.

[47] J.-D. Park, et al.. Low-frequency self-pulsations in asymmetric external-cavity semiconductor lasers due to multiple-feedback effects. Opt. Lett., 1989, 14(19): 1054-1056.

[48] J. Martinerie, et al.. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med., 1998, 4(10): 1173-1176.

[49] J. Feigenbaum. Financial physics. Rep. Prog. Phys., 2003, 66(10): 1611.

[50] N.Laptevet al., “Time-series extreme event forecasting with neural networks at Uber,” in Int. Conf. Mach. Learn., Vol. 34, pp. 15 (2017).

[51] V. Dakos, et al.. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(38): 14308-14312.

[52] J. Robertson, et al.. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt. Lett., 2017, 42(8): 1560-1563.

[53] J. Robertson, et al.. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J. Sel. Top. Quantum Electron., 2020, 26(1): 7700715.

[54] J. Zamora-Munt, C. R. Mirasso, R. Toral. Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization. Phys. Rev. E, 2014, 89(1): 012921.

[55] N. M. Granese, et al.. Extreme events and crises observed in an all-solid-state laser with modulation of losses. Opt. Lett., 2016, 41(13): 3010-3012.

[56] F. Marino, et al.. Experimental evidence of stochastic resonance in an excitable optical system. Phys. Rev. Lett., 2002, 88(4): 040601.

[57] V. K. Vanag, et al.. Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature, 2000, 406(6794): 389-391.

[58] F. Sagués, I. R. Epstein. Nonlinear chemical dynamics. Dalton Trans., 2003, 7: 1201-1217.

[59] B. V. Benjamin, et al.. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE, 2014, 102(5): 699-716.

[60] E. C. Mos, et al.. Optical neuron by use of a laser diode with injection seeding and external optical feedback. IEEE Trans. Neural Networks, 2000, 11(4): 988-996.

[61] P. R. Prucnal, et al.. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Opt. Photonics, 2016, 8(2): 228-299.

[62] A. Hurtado, et al.. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl. Phys. Lett., 2012, 100(10): 103703.

[63] J. Robertson, E. Wade, A. Hurtado. Electrically controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates. IEEE J. Sel. Top. Quantum Electron., 2019, 25(6): 5100307.

[64] Y. Zhang, et al.. Spike encoding and storage properties in mutually coupled vertical-cavity surface-emitting lasers subject to optical pulse injection. Appl. Opt., 2018, 57(7): 1731-1737.

[65] M. A. Nahmias, et al.. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron., 2013, 19(5): 1800212.

[66] E. M. Izhikevich. Which model to use for cortical spiking neurons?. IEEE Trans. Neural Networks, 2004, 15(5): 1063-1070.

[67] D. Sornette, G. Ouillon. Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top., 2012, 205: 1-26.

[68] F. Marino, et al.. Thermo-optical ‘canard orbits’ and excitable limit cycles. Phys. Rev. Lett., 2004, 92(7): 073901.

[69] A. Tierno, N. Radwell, T. Ackemann. Low-frequency self-pulsing in single-section quantum-dot laser diodes and its relation to optothermal pulsations. Phys. Rev. A, 2011, 84(4): 043828.

[70] M. Dillane, et al.. Square wave excitability in quantum dot lasers under optical injection. Opt. Lett., 2019, 44(2): 347-350.

[71] J. Tiana-Alsina, C. Quintero-Quiroz, C. Masoller. Comparing the dynamics of periodically forced lasers and neurons. New J. Phys., 2019, 21(10): 103039.

[72] A. Dolcemascolo, et al.. Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers. Phys. Rev. E, 2020, 101(5): 052208.

[73] G. Edwards, et al.. Tissue ablation by a free-electron laser tuned to the amide II band. Nature, 1994, 371: 416-419.

[74] Y. Huang, J. U. Kang. Quantum cascade laser thermal therapy guided by FDOCT. Chin. Opt. Lett., 2013, 11(1): 011701.

[75] M. Montesinos-Ballester, et al.. Optical modulation in Ge-rich SiGe waveguides in the mid-infrared wavelength range up to 11  μm. Commun. Mater., 2020, 1: 6.

Olivier Spitz, Jiagui Wu, Andreas Herdt, Grégory Maisons, Mathieu Carras, Wolfgang Elsäßer, Chee-Wei Wong, Frédéric Grillot. Extreme events in quantum cascade lasers[J]. Advanced Photonics, 2020, 2(6): 066001.

引用该论文: TXT   |   EndNote



关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。