压电与声光, 2023, 45 (1): 11, 网络出版: 2023-04-07  

基于IDTs电极分层布局结构的瑞利波器件特性研究

Study on Characteristics of Rayleigh Wave Devices with Layered Layout Structure of IDTs Electrode
作者单位
南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院, 江苏 南京 210009
摘要
现代科技的发展对高频声表面波(SAW)器件的需求不断增加, 对其工作频率也提出了更高的要求。为了提高SAW器件的频率, 该文构建了一种IDTs电极分层布局的器件模型, 即IDTs/AlN/IDTs/R-sapphire结构, 并采用有限元法分析其声学性能, 包括导纳、相速度、机电耦合系数等。结果表明, IDTs/AlN/IDTs/R-sapphire结构可激发出瑞利波, 且当AlN压电薄膜厚度hAlN=0.4λ(λ为器件周期), 水平中心距Pb=4 μm时, 其工作频率为692 MHz, 传统的IDTs/AlN/R-sapphire结构器件提高了近1倍(356 MHz), 而此时机电耦合系数K2为0.3%, 比传统结构高。另外, 通过优化IDTs电极的结构参数可进一步改善、调制瑞利波器件的性能。当IDTs的上层铜电极和下层铝电极厚度之比Δh=1.2, Pb=4 μm, hAlN/λ=0.5时, 瑞利波器件的谐振频率为657.9 MHz, K2=1.27%; 当Pb=6 μm时, 瑞利波的工作频率为461 MHz, 机电耦合系数达到最大(K2max=1.34%), 较传统IDTs单层布局结构瑞利波器件分别提升了30%和300%。结果表明, IDTs电极分层布局结构不仅可有效地提高SAW器件的工作频率和机电耦合系数, 也可以降低高频SAW器件的制备难度。
Abstract
The development of modern technology has increased the demands for high-frequency surface acoustic wave (SAW) devices, and has placed higher requirements on their operating frequencies. In order to increase the frequency of SAW devices, a device model with layered layout of IDTs electrodes is established, that is, IDTs/AlN/IDTs/R-sapphire structure. The finite element method is used to analyze its acoustic performance, including the admittance, phase velocity, electro-mechanical coupling coefficient, etc.. The results show that the Rayleigh waves can be excited in the IDTs/AlN/IDTs/R-sapphire structure, and when hAlN=0.4λ, the horizontal center distance Pb=4 μm, the operating frequency of the device is 692 MHz, which is nearly one time higher than that of the traditional device with IDTs/AlN/R-sapphire structure (356 MHz), and the electro-mechanic coupling coefficient K2 is 0.3%, which is also improved compared with the traditional structure. In addition, the performances of Rayleigh wave device can be further improved and modulated by optimizing the electrode structure parameters of IDTs. When the thickness ratio (Δh) of upper copper electrode to lower aluminum electrode of IDTs is 1.2, and Pb=4 μm, hAlN/λ=0.5, the resonant frequency of 657.9 MHz and K2 of 1.27% are obtained for the Rayleigh wave device; and when Pb=6 μm, the operating frequency of the Rayleigh wave and the maximum electromechanical coupling coefficient K2max are 461 MHz and 1.34%, respectively, which are 30% and 300% higher than that of the traditional Rayleigh wave device with single layered layout structure of IDTs electrode, respectively. From the above-mentioned results, it can be seen that the layered layout structure of IDTs can not only effectively improve the operating frequency and electromechanical coupling coefficient of SAW devices, but also reduce the fabrication difficulty of high frequency SAW devices.
参考文献

[1] YANG S,AI Y,CHENG Z,et al.Method of the out-of-band rejection improvement of the AlN based surface acoustic wave filters[J].Ultrasonics,2018,91:30-33.

[2] WANG K,WEI Z,LIN Z,et al.Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves[J].Sensors and Actuators B Chemical,2017,258:1174-1183.

[3] MA G M,WU Z,ZHOU H Y,et al.A wireless and passive on-line temperature monitoring system for gis based on surface acoustic wave sensor[J].IEEE Transactions on Power Delivery,2016,31(3):1270-1280.

[4] SATZINGER K J,ZHONG Y P,CHANG H S,et al.Quantum control of surface acoustic wave phonons[J].Nature,2018,563: 661-665.

[5] YOUN-SUK C,JOONHYUNG L,YEOLHO L,et al.Increase in detection sensitivity of surface acoustic wave biosensor using triple transit echo wave[J].Applied Physics Letters,2018,113(8):083702.

[6] MORTET V,ELMAZRIA O,NESLADEK M,et al.Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures[J].Applied Physics Letters,2002,81(9):1720-1722.

[7] SIEMENS M E,LI Q,MURNANE M M,et al.High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams[J].Applied Physics Letters,2009,94(9):093103-093103-3.

[8] WANG L,CHEN S,ZHANG J,et al.Enhanced performance of 17.7 GHz SAW devices based on AlN/diamond/Si layered structure with embedded nanotransducer[J].Applied Physics Letters,2017,111(25):253502.

[9] FU S,WANG W,QIAN L,et al.High frequency surface acoustic wave devices based on ZnO/SiC layered structure[J].IEEE Electron Device Letters,2019,40(1): 103-106.

[10] ALMIRALL A,OLIVERI S,DANIAU W,et al.High-frequency surface acoustic wave devices based on epitaxial Z-LiNbO3 layers on sapphire[J].Applied Physics Letters,2019,114(16):162905.

[11] HU B,ZHANG S,ZHANG H,et al.Fabrications of Lband LiNbO3-based SAW resonators for aerospace applications[J].Micromachines,2019,10(6):349.

[12] BRUGGER M S,SCHNITZLER L G,NIEBERLE T,et al.Shear-horizontal surface acoustic wave sensor for non-invasive monitoring of dynamic cell spreading and attachment in wound healing assays[J].Biosensors & Bioelectronics,2021,173:112807.

[13] RO R Y,LEE R Y,LIN Z X,et al.Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure[J].Thin Solid Films,2013 529(1):470-474.

[14] WU T T,CHEN Y Y.Exact analysis of dispersive SAW devices on ZnO/diamond/Si-layeredstructures[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2002,49(1):142-149.

[15] DAVIDSSON J,IVDY V,ARMIENTO R,et al.Identi-fication of divacancy and silicon vacancy qubits in 6H-SiC[J].Applied Physics Letters,2020,116(5):059901.

[16] WANG Y,WASA K,ZHANG S Y.Effects of deposition conditions on the structural and acoustic characteristics of (1120) ZnO thin films on R-sapphire substrates[J].IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2012,59(8):1613.

[17] FU S,LI Q,GAO S,et al.Quality-enhanced AlN epitaxial films grown on c-sapphire using ZnO buffer layer for SAW applications[J].Applied Surface Science,2017,402(30):392-399.

[18] WANG Y,ZHANG S Y,FAN L,et al.Characteristics of surface acoustic waves excited by (1120) Zno films deposited on R-sapphire substrates[J].IEEE Trans Ultrason Ferroelectr Freq Control,2013,60(6):1213-1218.

[19] MITSUYU T,ONO S,WASA K.Structures and SAW properties of RF-sputtered single-crystal films of ZnO on sapphire[J].Journal of Applied Physics,1980,51(5):2464

[20] WANG Y,ZHANG S Y,XU J,et al.Characteristics of surface acoustic waves in (1120) ZnO film/R-sapphire substrate structures[J].Science China Physics,Mechanics & Astronomy,2018,61(2): 024311.

[21] BRIZOUAl L L,ELMAZRIA O.FEM modeling of AlN/diamond surface acoustic waves device[J].Diamond & Related Materials,2007,16(4/7):987-990.

[22] LAN X D,ZHANG S Y,WANG Y,et al.Humidity responses of Love wave sensors based on ZnO/R-sapphire bilayer structures[J].Sensors and Actuators A Physical,2015,230:136-141.

[23] PLESSKY V,KOSKELA J.Coupling-of-modes analysis of SAW devices[J].International Journal of High Speed Electronics & Systems,2000,10:867.

[24] LAN X D,ZHANG S Y,FAN L,et al.Simulation of SAW humidity sensors based on (1120) ZnO/R-sapphire structures[J].Sensors,2016,16(11):1112.

[25] FARNELL G W.Elastic wave propagation in thin layers[J].Physical Acoustics,1972:35-127.

[26] LAMANNA L,RIZZI F,GUIDO F,et al.Aluminum nitride-based flexible surface acoustic wave devices fabricated on transparent polyethylene naphthalate for wearable sensing[J].Advanced Electronic Materials,2019,5(6):1900095-1900095.

[27] BARTOLI F,STREQUE J,GHANBAJA J,et al.Epitaxial growth of Sc0.09Al0.91N and Sc0.18Al0.82N thin films on sapphire substrates by magnetron sputtering for surface acoustic waves applications[J].Sensors,2020,20(16):4630.

[28] THIERRY A,OMAR E,BADREDDINE A,et al.Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications[J].Applied Physics Letters,2010,96(20):141909.

[29] SHEN J,LUO J,FU S,et al.3D layout of interdigital transducers for high frequency surface acoustic wave devices[J].IEEE Access,2020,8:123262-123271.

[30] SOLAL M,HOLMGREN O,KOKKONEN K.Design,simulation,and visualization of R-SPUDT devices with transverse mode suppression[J].Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on,2010,57(2):412-420.

袁宇鑫, 武庆鹏, 孙立, 孙科学, 王艳. 基于IDTs电极分层布局结构的瑞利波器件特性研究[J]. 压电与声光, 2023, 45(1): 11. YUAN Yuxin, WU Qingpeng, SUN Li, SUN Kexue, WANG Yan. Study on Characteristics of Rayleigh Wave Devices with Layered Layout Structure of IDTs Electrode[J]. Piezoelectrics & Acoustooptics, 2023, 45(1): 11.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!