量子电子学报, 2023, 40 (2): 282, 网络出版: 2023-04-15  

少层PtSe2中光生载流子超快动力学研究

Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films
作者单位
1 中国科学院合肥物质科学研究院固体物理研究所材料物理重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
二维 PtSe2 具备宽可调带隙、高稳定性等优点, 在新型光电器件方面具有极大应用价值。利用时间分辨太赫兹光谱研究了不同厚度 PtSe2 中的光生载流子超快动力学, 发现该材料瞬态太赫兹光电导的幅度及其激发光强度依赖性随材料厚度的增加呈现出显著的非线性增加趋势。通过太赫兹光电导频谱分析, 获得了光生载流子浓度、散射时间、背散射因子等动力学参数, 并结合激发波长依赖的太赫兹弛豫动力学, 推测束缚激子和自由载流子的竞争是引起这种厚度非线性关系的主要原因。此外, 基于光泵浦- 光探测光谱证明了 PtSe2 中的激子效应及半导体-半金属转变。该工作演示了层数对 PtSe2 中非平衡态动力学的有效调控, 对贵金属基二维材料在光电器件方面的应用具有指导意义。
Abstract
Two-dimensional(2D) PtSe2 has the unique properties such as large-range tunability in band gap and high air stability, holding a great promise in the development of novel optoelectronic devices. In this work, the ultrafast photocarrier dynamics in 2D PtSe2 with different thicknesses have been studied by using time-resolved terahertz(THz) spectroscopy. It is found that both the amplitude of transient THz photoconductivity and its dependence on the excitation fluence of the material show a significant nonlinear increase with the increase of sample thickness. The dynamical parameters including photocarrier density, scattering time and backscattering factor are obtained through analyzing the THz frequency-dependent conductivities. In combination with the excitation-wavelength dependent THz relaxation dynamics, it can be inferred that the competition between bound excitons and free carriers is mainly responsible for the nonlinear thickness dependence. In addition, the exciton effect and thickness-induced semiconductor-semimetal transition in PtSe2 are also revealed using the optical pump-optical probe spectroscopy. This work demonstrates the effective regulation on the nonequilibrium ultrafast dynamics of PtSe2 through varying the thickness of materials, and provides an important guideline for the optoelectronic applications of noble-metal based 2D materials.
参考文献

[1] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene [J]. Science, 2011, 334(6056): 648-652.

[2] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[3] Tielrooij K J, Piatkowski L, Massicotte M, et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating [J]. Nature Nanotechnology, 2015, 10(5): 437-443.

[4] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters [J]. Journal of Applied Physics, 1982, 53(5): 3813-3818.

[5] Nelson C A, Monahan N R, Zhu X Y. Exceeding the Shockley-Queisser limit in solar energy conversion [J]. Energy & Environmental Science, 2013, 6(12): 3508-3519.

[6] Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.

[7] He C, Zhu L P, Zhao Q Y, et al. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy [J]. Advanced Optical Materials, 2018, 6(19): 1800290.

[8] Steinleitner P, Merkl P, Nagler P, et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2 [J]. Nano Letters, 2017, 17(3): 1455-1460.

[9] Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene [J]. Nano Letters, 2011, 11(11): 4688-4692.

[10] Chen Y Z, Li Y J, Zhao Y D, et al. Highly efficient hot electron harvesting from graphene before electron-hole thermalization [J]. Science Advances, 2019, 5(11): eaax9958.

[11] Huang H Q, Zhou S Y, Duan W H. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides [J]. Physical Review B, 2016, 94(12): 121117.

[12] Zhang K N, Yan M Z, Zhang H X, et al. Experimental evidence for type-II Dirac semimetal in PtSe2 [J]. Physical Review B, 2017, 96(12): 125102.

[13] Ciarrocchi A, Avsar A, Ovchinnikov D, et al. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide [J]. Nature Communications, 2018, 9: 919.

[14] Shi J P, Huan Y H, Hong M, et al. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition [J]. ACS Nano, 2019, 13(7): 8442-8451.

[15] Yang H, Schmidt M, Süss V, et al. Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2 [J]. New Journal of Physics, 2018, 20(4): 043008.

[16] Hao K, Xu L X, Nagler P, et al. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2 [J]. Nano Letters, 2016, 16(8): 5109-5113.

[17] Zhao Y, Qiao J, Yu Z, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs [J]. Advanced Materials, 2017, 29(5): 1604230.

[18] Yu X C, Yu P, Wu D, et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor [J]. Nature Communications, 2018, 9: 1545.

[19] Wang L, Zhang S F, McEvoy N, et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2 [J]. Laser & Photonics Reviews, 2019, 13(8): 1900052.[LinkOut]

[20] Zhao X, Liu F, Liu D Q, et al. Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases [J]. Applied Physics Letters, 2019, 115(26): 263102.

[21] He J B, Zhu X D, Liu W M, et al. Versatile band structure and electron-phonon coupling in layered PtSe2 with strong interlayer interaction [J]. Nano Research, 2022, 15(7): 6613-6619.

[22] Qiu W T, Liang W Z, Guo J, et al. Thickness-dependent ultrafast hot carrier and phonon dynamics of PtSe2 films measured with femtosecond transient optical spectroscopy [J]. Journal of Physics D: Applied Physics, 2021, 54(7): 075102.

[23] Bae S, Nah S, Lee D, et al. Exciton-dominated ultrafast optical response in atomically thin PtSe2 [J]. Small, 2021, 17(45): e2103400.

[24] Wang P Z, He D W, Wang Y S, et al. Fast exciton diffusion in monolayer PtSe2 [J]. Laser & Photonics Reviews, 2022, 16(7): 2100594.

[25] Wang G Z, Wang K P, McEvoy N, et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2 [J]. Small, 2019, 15(34): 1902728.

[26] Shin H J, Bae S, Sim S. Ultrafast Auger process in few-layer PtSe2 [J]. Nanoscale, 2020, 12(43): 22185-22191.

[27] Fu J B, Xu W Q, Chen X, et al. Thickness-dependent ultrafast photocarrier dynamics in selenizing platinum thin films [J]. The Journal of Physical Chemistry C, 2020, 124(19): 10719-10726.

[28] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy [J]. Reviews of Modern Physics, 2011, 83(2): 543-586.

[29] Docherty C J, Parkinson P, Joyce H J, et al. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition [J]. ACS Nano, 2014, 8(11): 11147-11153.

[30] Mihnev M T, Kadi F, Divin C J, et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene [J]. Nature Communications, 2016, 7: 11617.

[31] Yang J, Jiang S L, Xie J F, et al. Identifying the intbgermediate free-carrier dynamics across the charge separation in monolayer MoS2/ReSe2 heterostructures [J]. ACS Nano, 2021, 15(10): 16760-16768.

[32] Jiang W, Wang X D, Chen Y, et al. Large-area high quality PtSe2 thin film with versatile polarity [J]. InfoMat, 2019, 1(2): 260-267.

[33] Wang Y L, Li L F, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt [J]. Nano Letters, 2015, 15(6): 4013-4018.

[34] Ceballos F, Zhao H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene [J]. Advanced Functional Materials, 2017, 27(19): 1604509.

[35] George P A, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene [J]. Nano Letters, 2008, 8(12): 4248-4251.

[36] Jiang S L, Yang J, Zhu L, et al. Nonlinear electronic and ultrafast optical signatures in chemical vapor-deposited ultrathin PtS2 ribbons [J]. Nano Research, 2022, 15(5): 4366-4373.

[37] Cha S, Sung J H, Sim S, et al. 1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy [J]. Nature Communications, 2016, 7: 10768.

[38] Cocker T L, Baillie D, Buruma M, et al. Microscopic origin of the Drude-Smith model [J]. Physical Review B, 2017, 96(20): 205439.

[39] AlMutairi A, Yin D M, Yoon Y. PtSe2 field-effect transistors: New opportunities for electronic devices [J]. IEEE Electron Device Letters, 2018, 39(1): 151-154.

[40] Cooke D G, MacDonald A N, Hryciw A, et al. Transient terahertz conductivity in photoexcited silicon nanocrystal films [J]. Physical Review B, 2006, 73(19): 193311.

[41] Sajjad M, Singh N, Schwingenschlgl U. Strongly bound excitons in monolayer PtS2 and PtSe2 [J]. Applied Physics Letters, 2018, 112(4): 043101.

[42] Xu S J, Yang J, Jiang H C, et al. Transient photoconductivity and free carrier dynamics in a monolayer WS2 probed by time resolved terahertz spectroscopy [J]. Nanotechnology, 2019, 30(26): 265706.

[43] Chen X, Zhang S F, Wang L, et al. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2 [J]. Photonics Research, 2019, 7(12): 1416-1424.

[44] Pogna E A A, Jia X Y, Principi A, et al. Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons [J]. ACS Nano, 2021, 15(7): 11285-11295.

杨金, 王云峰, 储玲巧, 蒋华超, 苏付海. 少层PtSe2中光生载流子超快动力学研究[J]. 量子电子学报, 2023, 40(2): 282. YANG Jin, WANG Yunfeng, CHU Lingqiao, JIANG Huachao, SU Fuhai. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!