光学学报, 2023, 43 (18): 1899901, 网络出版: 2023-09-14  

星载高光谱分辨率激光雷达大气气溶胶和云探测研究 下载: 838次特邀研究论文封面文章

Spaceborne High Spectral Resolution Lidar for Atmospheric Aerosols and Clouds Profiles Measurement
胡建波 1,2王雄 1,3赵少华 4王中挺 4杨巨鑫 1,2,5戴光耀 6谢缘 1竹孝鹏 1,2,5刘东 7侯霞 1,2,5,8刘继桥 1,2,5,8,*陈卫标 2,5,8,**
作者单位
1 中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 华中科技大学光学与电子信息学院,湖北 武汉 430074
4 生态环境部卫星环境应用中心,北京 100094
5 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室,上海 201800
6 中国海洋大学信息科学与工程学部海洋技术学院,山东 青岛 266100
7 浙江大学光电科学与工程学院,浙江 杭州 310027
8 崂山实验室,山东 青岛 266237
摘要
为实现对全球气溶胶光学参数剖面的高精度测量,采用基于碘分子滤波器的高光谱分辨率探测技术。结合欧洲中期天气预报中心(ECMWF)的大气再分析数据集(ERA5)的温度和压强数据,选取在轨期间途经撒哈拉沙漠和加拿大山火区域的星载高光谱分辨率激光雷达(HSRL)的观测数据,对沙尘类气溶胶和烟尘类气溶胶的光学特性进行分析,包括气溶胶的后向散射系数、消光系数、退偏振比和雷达比。结果表明:撒哈拉沙漠地区近地面5 km以内的气溶胶分布主要以沙尘类气溶胶为主,其退偏振比集中在0.2~0.4,雷达比数值集中在40~60 sr;加拿大山火地区的气溶胶主要以烟尘类气溶胶为主,其退偏振比集中在0.02~0.15,雷达比在50~70 sr范围。激光雷达特有的高光谱探测技术,在气溶胶和云的精细化探测和分类方面具有重要应用,将在环境监测中发挥重要作用。
Abstract
Objective

On April 16, 2022, the aerosol and carbon dioxide detection lidar (ACDL) was successfully launched with the atmospheric environment monitoring (DQ-1) satellite. The high spectral resolution lidar (HSRL) system of ACDL, which is responsible for measuring atmospheric aerosol and cloud profiles, has successfully worked in orbit for more than one year and provided accurate global aerosol and cloud profiles. Aerosols have a significant impact on the global radiation balance and climate change. The biggest unknown when it comes to predicting climate is the radiative effect between aerosols and clouds. Therefore, in order to determine the distribution and the change of aerosols in the atmosphere, it is important to make high-precision observations of aerosols in the atmosphere with high temporal and spatial resolution. As an active remote sensing instrument, lidar is widely used in atmospheric aerosol profiles with high temporal and spatial resolution and continuous observation during the day and night. High spectral resolution lidar has the advantage of separating atmospheric aerosols Mie scattering signal and molecular Rayleigh scattering signal, compared with traditional elastic scattering lidar. Therefore, HSRL can directly obtain the backscattering coefficient, extinction coefficient, depolarization ratio, and lidar ratio of aerosols, without assuming the lidar ratio. It significantly improves the accuracy of aerosol optical parameters which would be used widely in environment monitoring and climate study.

Methods

The spaceborne HSRL system of ACDL based on an iodine molecular filter is implemented in orbit to measure aerosol and cloud profiles with high accuracy. Combined with the temperature and pressure data of the atmospheric reanalysis dataset (ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF), the optical parameters such as backscattering coefficient, extinction coefficient, depolarization ratio, and lidar ratio of aerosols are obtained through data inversion. Aerosols are classified by reference values of optical parameters of different aerosol types. In this paper, cases of measurement data over Sahara Desert and Canadian wildfires region are selected to analyze the dust aerosols and smoke aerosols, respectively.

Results and Discussions

The optical properties of dust aerosols and smoke aerosols are analyzed by selecting the observation data of spaceborne high spectral resolution lidar over the Sahara Desert and the Canadian wildfires. These optical parameters include the backscattering coefficient, extinction coefficient, depolarization ratio, and lidar ratio of aerosols. The trajectory of ACDL and the attenuated backscatter coefficients at 532 nm of the parallel channel, perpendicular channel, and molecular channel over the Sahara Desert (Figs. 3-4) and the Canadian wildfires (Figs.7-8) are presented. The results show that the aerosols within 5 km near the ground in the selected Sahara Desert area are mainly dust aerosols (Fig. 6), and the depolarization ratio is concentrated in 0.2-0.4; the lidar ratio is concentrated in 40-60 sr (Fig. 5). The selected Canadian wildfire region is dominated by smoke aerosols (Fig. 10), whose depolarization ratio is concentrated in the range of 0.02-0.15, and lidar ratio is in the range of 50-70 sr (Fig. 9). The unique high spectral resolution detection technique of lidar has important applications in the fine detection and classification of aerosols and clouds and will play an important role in environmental monitoring.

Conclusions

In this paper, the high spectral resolution system based on the iodine molecular filter of Chinese spaceborne lidar ACDL and the inversion method of aerosol optical parameters are presented. Dust aerosols over the Sahara Desert and smoke aerosols generated by Canadian wildfires are selected as typical aerosol events for analysis. Accurate aerosol optical parameters are obtained by ACDL, and aerosols are classified according to those parameters. The spatial and temporal distribution characteristics and formation causes of aerosols in these areas are analyzed. The research in this paper shows the advantages of spaceborne high spectral resolution lidar in large-scale continuous and accurate observation of global aerosol distribution and provides a powerful means for accurate measurement and scientific application of global aerosol.

胡建波, 王雄, 赵少华, 王中挺, 杨巨鑫, 戴光耀, 谢缘, 竹孝鹏, 刘东, 侯霞, 刘继桥, 陈卫标. 星载高光谱分辨率激光雷达大气气溶胶和云探测研究[J]. 光学学报, 2023, 43(18): 1899901. Jianbo Hu, Xiong Wang, Shaohua Zhao, Zhongting Wang, Juxin Yang, Guangyao Dai, Yuan Xie, Xiaopeng Zhu, Dong Liu, Xia Hou, Jiqiao Liu, Weibiao Chen. Spaceborne High Spectral Resolution Lidar for Atmospheric Aerosols and Clouds Profiles Measurement[J]. Acta Optica Sinica, 2023, 43(18): 1899901.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!