Advanced Photonics Nexus, 2023, 2 (5): 056008, Published Online: Sep. 18, 2023  

High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging

Author Affiliations
1 South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
2 South China Normal University, College of Biophotonics, Guangdong Key Laboratory of Laser Life Science, Guangzhou, China
Copy Citation Text

Zewei Luo, Guodong Zang, Ge Wu, Mengting Kong, Zhengfei Zhuang, Tongsheng Chen. High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging[J]. Advanced Photonics Nexus, 2023, 2(5): 056008.

References

[1] A. M. Szalai, C. Zaza, F. D. Stefani. Super-resolution FRET measurements. Nanoscale, 2021, 13(44): 18421-18433.

[2] L. A. Masullo, et al.. Fluorescence nanoscopy at the sub-10 nm scale. Biophys. Rev., 2021, 13: 1101-1112.

[3] J. Zhang, et al.. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Micron, 2016, 88: 7-15.

[4] T. Zal, N. R. J. Gascoigne. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J., 2004, 86(6): 3923-3939.

[5] A. Szabo, et al.. Quo vadis FRET? Förster’s method in the era of superresolution. Methods Appl. Fluoresc., 2020, 8(3): 032003.

[6] H. E. Grecco, P. J. Verveer. FRET in cell biology: still shining in the age of super-resolution?. ChemPhysChem., 2011, 12(3): 484-490.

[7] A. Auer, et al.. Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano Lett., 2017, 17(10): 6428-6434.

[8] S. Cho, et al.. Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer. Sci. Rep., 2013, 3: 1208.

[9] H. Wallrabe, A. Periasamy. Imaging protein molecules using FRET and FLIM microscopy. Anal. Biotechnol., 2005, 16(1): 19-27.

[10] A. M. Szalai, et al.. Super-resolution imaging of energy transfer by intensity-based STED-FRET. Nano Lett., 2021, 21(5): 2296-2303.

[11] Z. Luo, et al.. Structured illumination-based super-resolution live-cell quantitative FRET imaging. Photon. Res., 2023, 11(5): 887-896.

[12] Z. Liu, et al.. Optical section structured illumination-based Förster resonance energy transfer imaging. Cytometry A, 2022, 101(3): 264-272.

[13] A. Markwirth, et al.. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 2019, 10(1): 4315.

[14] S. Tu, et al.. Fast reconstruction algorithm for structured illumination microscopy. Opt. Lett., 2020, 45(6): 1567-1570.

[15] M. Müller, et al.. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 2016, 7: 10980.

[16] M. G. Gustafsson, et al.. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 2008, 94(12): 4957-4970.

[17] D. Li, et al.. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 2015, 349: aab3500.

[18] Y. Wu, H. Shroff. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods, 2018, 15(12): 1011-1019.

[19] J. Demmerle, et al.. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc., 2017, 12(5): 988-1010.

[20] J. Fan, et al.. A protocol for structured illumination microscopy with minimal reconstruction artifacts. Biophys. Rep., 2019, 5: 80-90.

[21] G. Wen, et al.. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 2021, 10(1): 70.

[22] Z. Wang, et al.. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation, 2023, 4(3): 100425.

[23] G. Wen, et al.. Frequency–spatial domain joint optimization for improving super-resolution images of nonlinear structured illumination microscopy. Opt. Lett., 2021, 46(23): 5842-5845.

[24] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 2016, 22(4): 50-63.

[25] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 2000, 198(2): 82-87.

[26] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 1999, 3568: 185-196.

[27] C. Zhang, et al.. Automated E-FRET microscope for dynamical live-cell FRET imaging. J. Microsc., 2019, 274(1): 45-54.

[28] M. Ben-Johny, D. N. Yue, D. T. Yue. Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nat. Commun., 2016, 7: 13709.

[29] F. Yang, et al.. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell. Mol. Life Sci., 2020, 77(12): 2387-2406.

[30] H. Chen, et al.. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J., 2006, 91(5): L39-L41.

[31] K. Chu, et al.. Image reconstruction for structured-illumination microscopy with low signal level. Opt. Express, 2014, 22(7): 8687-8702.

Zewei Luo, Guodong Zang, Ge Wu, Mengting Kong, Zhengfei Zhuang, Tongsheng Chen. High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging[J]. Advanced Photonics Nexus, 2023, 2(5): 056008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!