量子电子学报, 2023, 40 (2): 164, 网络出版: 2023-04-15   

液体产生太赫兹波的特性研究

Characteristics of terahertz wave generated from liquids
作者单位
首都师范大学物理系太赫兹光电子学教育部重点实验室, 北京 100048
摘要
最新的实验研究表明通过激光激发液体诱导等离子体可产生宽带太赫兹波, 且液体作为太赫兹波辐射源具有独特的性质。液体具有与固体相当的物质密度, 激光在一定区域内与分子的相互作用比气体多三个数量级; 而与固体相比, 液体的流动性使得每一个激光脉冲可与目标物液体靶的新区域相互作用。这些特性使得液体在高能量密度等离子体的研究中具有广阔的前景, 甚至有可能成为下一代太赫兹波辐射源。本文全面综述了液体的流体状态和种类、激光入射位置和角度、脉冲持续时间以及脉冲能量等因素对产生太赫兹波的影响。
Abstract
Recently, broadband THz wave generation from a liquid target excited by femtosecond laser has been experimentally demonstrated, and it is found that liquid has unique properties as a terahertz wave radiation source. Liquid has the comparable material density to that of solid, which means that laser pulses will interact with three orders more molecules for liquid source than for gas source. In the other hand, compared with solid, the fluidity of the liquid allows each laser pulse to interact with a fresh area of the target, which means that intense laser pulse is not an issue of material damage or degradation. These characteristics make liquid very promising for the study of high-energy density plasma and even becoming the next generation of THz source. In this paper, the influences of the shape and type of liquid target, incidence position and angle of laser beam, pulse duration and energy on THz wave generation are reviewed.
参考文献

[1] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications [J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.

[2] Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: A review [J]. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661-1690.

[3] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

[4] Zalden P, Song L W, Wu X J, et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation [J]. Nature Communications, 2018, 9: 2142.

[5] Zhao H, Tan Y, Zhang L L, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence [J]. Light: Science & Applications, 2020, 9: 136.

[6] Tan Y, Zhao H, Zhang R, et al. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy [J]. Advanced Photonics, 2021, 3: 015002.

[7] Tcypkin A, Zhukova M, Melnik M, et al. Giant third-order nonlinear response of liquids at terahertz frequencies [J]. Physical Review Applied, 2021, 15(5): 054009.

[8] Fitzgerald A J, Berry E, Zinov’ev N N, et al. Catalogue of human tissue optical properties at terahertz frequencies [J]. Journal of Biological Physics, 2003, 29(2-3): 123-128.

[9] Oh S J, Kim S H, Ji Y B, et al. Study of freshly excised brain tissues using terahertz imaging [J]. Biomedical Optics Express, 2014, 5(8): 2837-2842.

[10] Joseph C S, Yaroslavsky A N, Neel V A, et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers [J]. Lasers in Surgery and Medicine, 2011, 43(6): 457-462.

[11] Cheon H, Yang H J, Lee S H, et al. Terahertz molecular resonance of cancer DNA [J]. Scientific Reports, 2016, 6: 37103.

[12] Melinger J S, Harsha S S, Laman N, et al. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials [J]. Optics Express, 2010, 18(26): 27238-27250.

[13] Ergün S, Snmez S. Terahertz technology for military applications [J]. Journal of Military and Information Science, 2015, 3(1): 13-16.

[14] Palka N, Szala M, Czerwinska E. Characterization of prospective explosive materials using terahertz time-domain spectroscopy [J]. Applied Optics, 2016, 55(17): 4575-4583.

[15] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics [J]. Nature Photonics, 2016, 10(6): 371-379.

[16] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143-171.

[17] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications [J]. Journal of Applied Physics, 2010, 107(11): 111101.

[18] Dai J M, Liu J L, Zhang X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190.

[19] Fülp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources [J]. Advanced Optical Materials, 2020, 8(3): 1900681.

[20] Lee Y S. Principles of Terahertz Science and Technology [M]. Springer, 2009.

[21] Bartel T, Gaal P, Reimann K, et al. Generation of single-cycle THz transients with high electric-field amplitudes [J]. Optics Letters, 2005, 30(20): 2805-2807.

[22] Karpowicz N, Dai J M, Lu X F, et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap" [J]. Applied Physics Letters, 2008, 92(1): 011131.

[23] Ronne C, Thrane L, strand P O, et al. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation [J]. The Journal of Chemical Physics, 1997, 107(14): 5319-5331.

[24] Hale G M, Querry M R. Optical constants of water in the 200 nm to 200 μm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563.

[25] Jin Q, E Y W, Williams K, et al. Observation of broadband terahertz wave generation from liquid water [J]. Applied Physics Letters, 2017, 111(7): 071103.

[26] Dey I, Jana K, Fedorov V Y, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids [J]. Nature Communications, 2017, 8: 1184.

[27] Schnebelin C, Cassagne C, de Araújo C B, et al. Measurements of the third and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method [J]. Optics Letters, 2014, 39(17): 5046-5049.

[28] Tcypkin A N, Melnik M V, Zhukova M O, et al. High Kerr nonlinearity of water in THz spectral range [J]. Optics Express, 2019, 27(8): 10419-10425.

[29] Williams F, Varma S P, Hillenius S. Liquid water as a lone-pair amorphous semiconductor [J]. The Journal of Chemical Physics, 1976, 64(4): 1549-1554.

[30] Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation [J]. Chemical Physics, 1983, 77(1): 131-143.

[31] Crowell R A, Bartels D M. Multiphoton ionization of liquid water with 3.0-5.0 eV photons [J]. The Journal of Physical Chemistry, 1996, 100(45): 17940-17949.

[32] Schneider A, Neis M, Stillhart M, et al. Generation of terahertz pulses through optical rectification in organic DAST crystals: Theory and experiment [J]. Journal of the Optical Society of America B, 2006, 23(9): 1822-1835.

[33] Horiuchi N. Terahertz surprises [J]. Nature Photonics, 2018, 12(3): 128-130.

[34] Li M, Li Z Y, Nan J Y, et al. THz generation from water wedge excited by dual-color pulse [J]. Chinese Optics Letters, 2020, 18(7): 073201.

[35] Jin Q, E Y W, Gao S H, et al. Preference of subpicosecond laser pulses for terahertz wave generation from liquids [J]. Advanced Photonics, 2020, 2: 015001.

[36] Feng S J, Dong L Q, Wu T, et al. Terahertz wave emission from water lines [J]. Chinese Optics Letters, 2020, 18(2): 023202.

[37] Zhang L L, Wang W M, Wu T, et al. Strong terahertz radiation from a liquid-water line [J]. Physical Review Applied, 2019, 12: 014005.

[38] Chen Y X, He Y H, Zhang Y F, et al. Systematic investigation of terahertz wave generation from liquid water lines [J]. Optics Express, 2021, 29(13): 20477-20486.

[39] Solyankin P M, Lakatosh B V, Krivokorytov M S, et al. Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Physical Review Applied, 2020, 14(3): 034033.

[40] Ismagilov A O, Ponomareva E A, Zhukova M O, et al. Liquid jet-based broadband terahertz radiation source [J]. Optical Engineering, 2021, 60(8): 082009.

[41] E Y W, Zhang L L, Tcypkin A, et al. Broadband THz sources from gases to liquids [J]. Ultrafast Science, 2021, 3: 80-96.

[42] E Y W, Cao Y Q, Ling F, et al. Flowing cryogenic liquid target for terahertz wave generation [J]. AIP Advances, 2020, 10(10): 105119.

[43] Balakin A V, Coutaz J L, Makarov V A, et al. Terahertz wave generation from liquid nitrogen [J]. Photonics Research, 2019, 7(6): 678-686.

[44] Jin Q, Dai J M, E YW, et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields [J]. Applied Physics Letters, 2018, 113(26): 261101.

[45] Watanabe A, Saito H, Ishida Y, et al. A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers [J]. Optics Communications, 1989, 71(5): 301-304.

[46] Taylor G. Formation of thin flat sheets of water [J]. Proceedings of the Royal Society of London: Series A, 1961, 259: 1-17.

[47] Wang T W, Klarskov P, Jepsen P U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425-431.

[48] Hale G M, Querry M R. Optical constants of water in the 200 nm to 200 μm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563.

[49] Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media [J]. Progress in Quantum Electronics, 1997, 21(3): 155-248.

[50] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction [J]. Physical Review Letters, 1993, 71(17): 2725-2728.

[51] Hamster H, Sullivan A, Gordon S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas [J]. Physical Review E, 1994, 49(1): 671-677.

[52] E Y W, Jin Q, Tcypkin A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown [J]. Applied Physics Letters, 2018, 113(18): 181103.

[53] Buccheri F, Zhang X C. Terahertz emission from laser-induced microplasma in ambient air [J]. Optica, 2015, 2(4): 366.

[54] Stumpf S, Ponomareva E, Tcypkin A, et al. Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium [J]. Laser Physics, 2019, 29(12): 124014.

[55] Ponomareva E A, Stumpf S A, Tcypkin A N, et al. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation [J]. Optics Letters, 2019, 44(22): 5485-5488.

[56] Kraus A D, Welty J R, Aziz A S. Introduction to Thermal and Fluid Engineering [M]. Boca Raton: CRC Press, 2011.

[57] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air [J]. Optics Letters, 2000, 25(16): 1210-1212.

[58] Kress M, Loffler T, Eden S, et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Optics Letters, 2004, 29(10): 1120-1122.

[59] Flettner A, Pfeifer T, Walter D, et al. High-harmonic generation and plasma radiation from water microdroplets [J]. Applied Physics B, 2003, 77(8): 747-751.

[60] Kandidov V P, Kosareva O G, Golubtsov I S, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media(or supercontinuum generation) [J]. Applied Physics B, 2003, 77(2-3): 149-165.

[61] Tcypkin A N, Ponomareva E A, Putilin S E, et al. Flat liquid jet as a highly efficient source of terahertz radiation [J]. Optics Express, 2019, 27(11): 15485-15494.

[62] Anand M, Kahaly S, Kumar G R, et al. Enhanced hard X-ray emission from microdroplet preplasma [J]. Applied Physics Letters, 2006, 88(18): 181111.

[63] Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source [J]. Review of Scientific Instruments, 2016, 87(10): 103304.

[64] Kim K Y, Glownia J H, Taylor A J, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields [J]. Optics Express, 2007, 15(8): 4577-4584.

[65] Chin S L. Femtosecond Laser Filamentation [M]. New York: Springer, 2010.

[66] Berglund M, Rymell L, Hertz H M. Ultraviolet prepulse for enhanced X-ray emission and brightness from droplet-target laser plasmas [J]. Applied Physics Letters, 1996, 69(12): 1683-1685.

[67] Ponomareva E A, Tcypkin A N, Smirnov S V, et al. Double-pump technique-one step closer towards efficient liquid-based THz sources [J]. Optics Express, 2019, 27(22): 32855-32862.

[68] Ponomareva E A, Ismagilov A O, Putilin S E, et al. Varying pre-plasma properties to boost terahertz wave generation in liquids [J]. Communications Physics, 2021, 4(1): 4.

[69] Huang H H, Nagashima T, Hsu W H, et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation [J]. Nanomaterials(Basel, Switzerland), 2018, 8(7): 523.

[70] E YW, Jin Q, Zhang X C. Enhancement of terahertz emission by a preformed plasma in liquid water [J]. Applied Physics Letters, 2019, 115(10): 101101.

[71] Samios J, Mittag U, Dorfmüller T. The far infrared absorption spectrum of liquid nitrogen [J]. Molecular Physics, 1985, 56(3): 541-556.

[72] Cao Y Q, E Y W, Huang P J, et al. Broadband terahertz wave emission from liquid metal [J]. Applied Physics Letters, 2020, 117(4): 041107.

[73] Snyder L R. Classification of the solvent properties of common liquids [J]. Journal of Chromatography A, 1974, 92(2): 223-230.

肖文, 张明浩, 张存林, 张亮亮. 液体产生太赫兹波的特性研究[J]. 量子电子学报, 2023, 40(2): 164. XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!