Photonics Research, 2023, 11 (9): 1509, Published Online: Aug. 28, 2023  

Heterogeneous optomechanical crystal cavity coupled by a wavelength-scale mechanical waveguide

Yang Luo 1†Hongyi Huang 1†Lei Wan 1,2,5,*Weiping Liu 1Zhaohui Li 3,4,6,*
Author Affiliations
1 Department of Electronic Engineering, College of Information Science and Technology, Jinan Universityhttps://ror.org/02xe5ns62, Guangzhou 510632, China
2 International Institute for Innovative Design and Intelligent Manufacturing, Tianjin University, Shaoxing 312000, China
3 Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510275, China
4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
5 e-mail: wanlei@jnu.edu.cn
6 e-mail: lzhh88@sysu.edu.cn
Copy Citation Text

Yang Luo, Hongyi Huang, Lei Wan, Weiping Liu, Zhaohui Li. Heterogeneous optomechanical crystal cavity coupled by a wavelength-scale mechanical waveguide[J]. Photonics Research, 2023, 11(9): 1509.

References

[1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 2007, 1: 319-330.

[2] K. Fang, M. H. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 2016, 10: 489-496.

[3] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 2012, 7: 509-514.

[4] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher. Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556: 473-477.

[5] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, M. D. Lukin. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett., 2010, 105: 220501.

[6] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86: 1391-1452.

[7] J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun., 2012, 3: 1196.

[8] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. Painter. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett., 2012, 108: 033602.

[9] D. K. Biegelsen. Photoelastic tensor of silicon and the volume dependence of the average gap. Phys. Rev. Lett., 1974, 32: 1196.

[10] R. Newnham, V. Sundar, R. Yimnirun, J. Su, Q. Zhang. Electrostriction: nonlinear electromechanical coupling in solid dielectrics. J. Phys. Chem. B, 1997, 101: 10141-10150.

[11] R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, A. H. Safavi-Naeini. Electrical driving of X-band mechanical waves in a silicon photonic circuit. APL Photon., 2018, 3: 086102.

[12] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett., 2012, 101: 081115.

[13] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 2009, 462: 78-82.

[14] X. Sun, X. Zhang, H. X. Tang. High-Q silicon optomechanical microdisk resonators at gigahertz frequencies. Appl. Phys. Lett., 2012, 100: 173116.

[15] A. Cleland, M. Pophristic, I. Ferguson. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett., 2001, 79: 2070-2072.

[16] L. Fan, X. Sun, C. Xiong, C. Schuck, H. X. Tang. Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors. Appl. Phys. Lett., 2013, 102: 153507.

[17] H. Li, S. A. Tadesse, Q. Liu, M. Li. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2015, 2: 826-831.

[18] C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys., 2012, 14: 095014.

[19] K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, K. Srinivasan. Moving boundary and photoelastic coupling in GaAs optomechanical resonators. Optica, 2014, 1: 414-420.

[20] S. Combrié, A. De Rossi, Q. V. Tran, H. Benisty. GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm. Opt. Lett., 2008, 33: 1908-1910.

[21] G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, J. Vučković. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator. Opt. Express, 2011, 19: 7530-7536.

[22] S. Hönl, Y. Popoff, D. Caimi, A. Beccari, T. J. Kippenberg, P. Seidler. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun., 2022, 13: 2065.

[23] M. Mitchell, A. C. Hryciw, P. E. Barclay. Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett., 2014, 104: 141104.

[24] K. Schneider, Y. Baumgartner, S. Hönl, P. Welter, H. Hahn, D. J. Wilson, L. Czornomaz, P. Seidler. Optomechanics with one-dimensional gallium phosphide photonic crystal cavities. Optica, 2019, 6: 577-584.

[25] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 2019, 6: 380-384.

[26] W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, A. H. Safavi-Naeini. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun., 2020, 11: 1166.

[27] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 2018, 26: 14810-14816.

[28] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, G. Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 2019, 7: 1003-1013.

[29] A. Siddiqui, R. H. Olsson, M. Eichenfield. Lamb wave focusing transducer for efficient coupling to wavelength-scale structures in thin piezoelectric films. J. Microelectromech. Syst., 2018, 27: 1054-1070.

[30] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 2020, 11: 3911.

[31] A. H. Safavi-Naeini, O. Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express, 2010, 18: 14926-14943.

[32] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 2019, 6: 845-853.

[33] L. Wan, Z. Yang, W. Zhou, M. Wen, T. Feng, S. Zeng, D. Liu, H. Li, J. Pan, N. Zhu. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl., 2022, 11: 145.

[34] R. Qi, Q. Xu, N. Wu, K. Cui, W. Zhang, Y. Huang. Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass. Photon. Res., 2021, 9: 893-898.

[35] J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun., 2014, 5: 4452.

[36] Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, A. H. Safavi-Naeini. Piezoelectric transduction of a wavelength-scale mechanical waveguide. Phys. Rev. Appl., 2020, 13: 024069.

[37] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 2019, 6: 1498-1505.

Yang Luo, Hongyi Huang, Lei Wan, Weiping Liu, Zhaohui Li. Heterogeneous optomechanical crystal cavity coupled by a wavelength-scale mechanical waveguide[J]. Photonics Research, 2023, 11(9): 1509.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!