人工晶体学报, 2023, 52 (3): 365, 网络出版: 2023-04-13  

线锯切片技术及其在碳化硅晶圆加工中的应用

Wire Saw Slicing and Its Application in Silicon Carbide Wafers Processing
作者单位
1 浙江大学物理学院, 杭州 310027
2 浙江大学杭州国际科创中心, 先进半导体研究院和浙江省宽禁带功率半导体材料与器件重点实验室, 杭州 311200
3 浙江大学材料科学与工程学院, 硅材料国家重点实验室, 杭州 310027
4 浙江机电职业技术学院增材制造学院, 杭州 310053
摘要
作为制备半导体晶圆的重要工序, 线锯切片对半导体晶圆的质量具有至关重要的影响。本文以发展最成熟的硅材料为例, 介绍了线锯切片技术的基本理论, 特别介绍了线锯切片技术的力学模型和材料去除机理, 并讨论了线锯制造技术及切片工艺对材料的影响。在此基础上, 综述了线锯切片技术在碳化硅晶圆加工中的应用和技术进展, 并分析了线锯切片技术对碳化硅晶体表面质量和损伤层的影响。最后, 本文指出了线锯切片技术在碳化硅晶圆加工领域面临的挑战与未来的发展方向。
Abstract
Wire saw slicing technology has become a research hotspot in the field of slicing of brittle-and-hard materials. As an important process in semiconductor wafer processing, wire saw slicing has a crucial impact on the quality of semiconductor wafers. This paper introduces the basic theory and the research progress of wire saw slicing technology, taking the most mature silicon crystal as an example, especially the mechanical model and material removal mechanism of wire saw slicing. Then the influence of wire saw manufacturing technology and slicing process on the material is discussed. Furthermore, silicon carbide is a key material that supports the development of electric cars, clean energy and national defense industry because of its outstanding comprehensive advantages in physical properties, such as wider band gap. In this paper, the application and technological progress of wire saw slicing in silicon carbide wafer processing are reviewed. In addition, the influence of wire saw slicing on the surface quality and damage of silicon carbide crystal is analyzed. Finally, this paper points out the challenges and future development directions of wire saw slicing technology.
参考文献

[1] YANG D R. Progress in silicon materials: from microelectronics to photovoltaics and optoelectronics[M]. Beijing: Science Press, 2004.

[2] 张 玺, 王 蓉, 张序清, 等. 碳化硅单晶衬底加工技术现状及发展趋势[J]. 中央民族大学学报(自然科学版), 2021, 30(4):5-12.

[3] WU H. Wire sawing technology: a state-of-the-art review[J]. Precision Engineering, 2016, 43: 1-9.

[4] 王沛志. 单晶碳化硅的金刚石线锯切片表层裂纹损伤研究[D]. 济南: 山东大学, 2020.

[5] 李 伦, 李淑娟, 汤奥斐, 等. SiC单晶片线锯切割技术研究进展[J]. 机械强度, 2015, 37(5): 849-856.

[6] 何 超, 王英民, 李 斌, 等. SiC晶片加工技术现状与趋势[J]. 电子工业专用设备, 2016, 45(6): 1-6+54.

[7] HARDIN C W, QU J, SHIH A J. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers[J]. Materials and Manufacturing Processes, 2004, 19(2): 355-367.

[8] LI S, DU S, TANG A, et al. Force modeling and control of SiC monocrystal wafer processing[J]. Journal of Manufacturing Science and Engineering, 2015, 137(6): 061003.

[9] LI S J, WAN B, LANDERS R. Surface roughness optimization in processing SiC monocrystal wafers by wire saw machining with ultrasonic vibration[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228: 725-739.

[10] HUANG H, ZHANG Y X, XU X P. Experimental investigation on the machining characteristics of single-crystal SiC sawing with the fixed diamond wire[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 955-965.

[11] LI J, KAO I, PRASAD V. Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots: application to silicon wafer production[J]. Journal of Electronic Packaging, 1998, 120: 123-128.

[12] BHAGAVAT M, PRASAD V, KAO I. Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: modeling and finite element analysis[J]. Journal of Tribology, 2000, 122(2): 394-404.

[13] YANG F Q, KAO I. Free abrasive machining in slicing brittle materials with wiresaw[J]. Journal of Electronic Packaging, 2001, 123(3): 254-259.

[14] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9/10): 574-581.

[15] MARSHALL D, LAWN B, EVANS A. Elastic/plastic indentation damage in ceramics: the lateral crack system[J]. Journal of the American Ceramic Society, 1982, 65(11): 561-566.

[16] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.

[17] BUIJS M, HOUTEN K K V. A model for lapping of glass[J]. Journal of Materials Science, 1993, 28(11): 3014-3020.

[18] BUIJS M, KORPEL-VAN HOUTEN K. A model for three-body abrasion of brittle materials[J]. Wear, 1993, 162/163/164: 954-956.

[19] WIEDERHORN S M, HOCKEY B J. Effect of material parameters on the erosion resistance of brittle materials[J]. Journal of Materials Science, 1983, 18(3): 766-780.

[20] ROUTBORT J L, MATZKE H. On the correlation between solid-particle erosion and fracture parameters in SiC[J]. Journal of Materials Science, 1983, 18(5): 1491-1496.

[21] MUKHOPADHYAY A K, CHAKRABORTY D, SWAIN M V, et al. Scratch deformation behaviour of alumina under a sharp indenter[J]. Journal of the European Ceramic Society, 1997, 17(1): 91-100.

[22] MOORE M A, KING F S. Abrasive wear of brittle solids[J]. Wear, 1980, 60(1): 123-140.

[23] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.

[24] KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (a review)[J]. Journal of Superhard Materials, 2013, 35(5): 259-276.

[25] AREFIN S, LI X P, RAHMAN M, et al. The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(7): 655.

[26] LIU K, LI X P, LIANG S Y. The mechanism of ductile chip formation in cutting of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(9): 875-884.

[27] WU H, MELKOTE S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip[J]. Materials Science and Engineering: A, 2012, 549: 200-205.

[28] 霍凤伟. 硅片延性域磨削机理研究[D]. 大连: 大连理工大学, 2006.

[29] HUO F, JIN Z J, ZHAO F, et al. Experimental investigation of brittle to ductile transition of single crystal silicon by single grain grinding[J]. Key Engineering Materials, 2007, 329: 433-438.

[30] BIDIVILLE A, WASMER K, VAN DER MEER M, et al. Wire-sawing processes: parametrical study and modeling[J]. Solar Energy Materials and Solar Cells, 2015, 132: 392-402.

[31] BIERWISCH C, KBLER R, KLEER G, et al. Modelling of contact regimes in wire sawing with dissipative particle dynamics[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369(1945): 2422-30.

[32] ANSPACH O, HURKA B, SUNDER K. Structured wire: from single wire experiments to multi-crystalline silicon wafer mass production[J]. Solar Energy Materials and Solar Cells, 2014, 131: 58-63.

[33] WU H, YANG C, MELKOTE S N. Effect of reciprocating wire slurry sawing on surface quality and mechanical strength of as-cut solar silicon wafers[J]. Precision Engineering, 2014, 38(1): 121-126.

[34] LARS J, ERIK O J, TROND B, et al. Heat transfer during multiwire sawing of silicon wafers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3): 031006.

[35] ENOMOTO T, SHIMAZAKI Y, TANI Y, et al. Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot[J]. CIRP Annals, 1999, 48(1): 273-276.

[36] CHIBA Y, TANI Y, ENOMOTO T, et al. Development of a high-speed manufacturing method for electroplated diamond wire tools[J]. CIRP Annals, 2003, 52(1): 281-284.

[37] CHUNG C, TSAY G D, TSAI M H. Distribution of diamond grains in fixed abrasive wire sawing process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9): 1485-1494.

[38] WU H, MELKOTE S. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers[J]. Journal of Engineering Materials and Technology, 2012, 134: 041011.

[39] KIM D Y, LEE T K, PARK C J, et al. Evaluation of cutting ability of electroplated diamond wire using a test system and theoretical approach[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(4): 553-560.

[40] FURUTANI K, SUZUKI K. A desktop saw wire coating machine by using electrical discharge machining[C]//2009 IEEE International Conference on Control and Automation. December 9-11, 2009, Christchurch, New Zealand. IEEE, 2010: 2165-2170.

[41] ZHANG Z Y, XIAO B, DUAN D Z, et al. Investigation on the brazing mechanism and machining performance of diamond wire saw based on Cu-Sn-Ti alloy[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 211-219.

[42] MEINER D, SCHOENFELDER S, HURKA B, et al. Loss of wire tension in the wire web during the slurry based multi wire sawing process[J]. Solar Energy Materials and Solar Cells, 2014, 120: 346-355.

[43] KIM H, KIM D, KIM C, et al. Multi-wire sawing of sapphire crystals with reciprocating motion of electroplated diamond wires[J]. CIRP Annals, 2013, 62(1): 335-338.

[44] KAMIYA O, MIYANO Y, TAKAHASHI M, et al. Soldering process and cutting performance of micro saw wire bonded with diamond grains[J]. International Journal of Modern Physics: Conference Series, 2012, 6: 491-496.

[45] KUMAR A, KAMINSKI S, MELKOTE S N, et al. Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers[J]. Wear, 2016, 364/365: 163-168.

[46] PALA U, SSSMAIER S, KUSTER F, et al. Experimental investigation of tool wear in electroplated diamond wire sawing of silicon[J]. Procedia CIRP, 2018, 77: 371-374.

[47] SCHWINDE S, BERG M, KUNERT M. New potential for reduction of kerf loss and wire consumption in multi-wire sawing[J]. Solar Energy Materials and Solar Cells, 2015, 136: 44-47.

[48] MLLER H J. Basic mechanisms and models of multi-wire sawing[J]. Advanced Engineering Materials, 2004, 6(7): 501-513.

[49] YU X G, WANG P, LI X Q, et al. Thin Czochralski silicon solar cells based on diamond wire sawing technology[J]. Solar Energy Materials and Solar Cells, 2012, 98: 337-342.

[50] JIA Z, ZHAO L Q, REN Z, et al. Investigation into influence of feed speed on surface roughness in wire sawing[J]. Materials and Manufacturing Processes, 2015, 30: 875 - 881.

[51] 张 立, 于晋京, 李耀东, 等. 切割速度对硅片翘曲的影响[J]. 半导体技术, 2011, 36(5): 368-372.

[52] CHUNG C, KAO I. Modeling of axially moving wire with damping: eigenfunctions, orthogonality and applications in slurry wiresaws[J]. Journal of Sound and Vibration, 2011, 330(12): 2947-2963.

[53] KIM D, KIM H, LEE S, et al. Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(2): 117-121.

[54] LI Z, WANG M J, CAI Y J, et al. Experimental study on surface topography and fracture strength of worn saw wire in multi-wire sawing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 4125-4132.

[55] MENG H C, ZHOU L. Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement[J]. Silicon, 2014, 6(2): 129-135.

[56] POGUE V, MELKOTE S N, DANYLUK S. Residual stresses in multi-crystalline silicon photovoltaic wafers due to casting and wire sawing[J]. Materials Science in Semiconductor Processing, 2018, 75: 173-182.

[57] WRZNER S, HERMS M, KADEN T, et al. Characterization of the diamond wire sawing process for monocrystalline silicon by Raman spectroscopy and SIREX polarimetry[J]. Energies, 2017, 10(4): 414.

[58] LIU T Y, GE P Q, BI W B, et al. Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing[J]. Materials Science in Semiconductor Processing, 2017, 57: 147-156.

[59] SUZUKI T, NISHINO Y, YAN J W. Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon[J]. Precision Engineering, 2017, 50: 32-43.

[60] XIAO H P, WANG H R, YU N, et al. Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers[J]. Journal of Materials Processing Technology, 2019, 273: 116267.

[61] BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing[J]. International Journal of Machine Tools and Manufacture, 2008, 48(1): 95-106.

[62] BIDIVILLE A, WASMER K, MICHLER J, et al. Mechanisms of wafer sawing and impact on wafer properties[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(8): 563-572.

[63] ZHAO H X, JIN R, WU S, et al. PDE-constrained Gaussian process model on material removal rate of wire saw slicing process[J]. Journal of Manufacturing Science and Engineering, 2011, 133(2): 021012.

[64] ZHU L Q, KAO I. Galerkin-based modal analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw[J]. Journal of Sound and Vibration, 2005, 283(3/4/5): 589-620.

[65] LIEDKE T, KUNA M. A macroscopic mechanical model of the wire sawing process[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9): 711-720.

[66] 王肖烨. SiC单晶体超声线锯切割技术及实验研究[D]. 西安: 西安理工大学, 2013.

[67] 靳霄曦, 徐 伟, 魏汝省, 等. 高线速下碳化硅单晶的快速平坦化切割[J]. 超硬材料工程, 2019, 31(1): 30-33.

[68] 仲冬维. SiC陶瓷单颗粒刻划磨粒磨损特性仿真及实验研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.

[69] 孟 磊. 碳化硅的线锯切片技术与加工机理研究[D]. 济南: 山东大学, 2011.

[70] YAO T T, YIN D Q, SAITO M, et al. Nanoindentation-induced phase transformation between SiC polymorphs[J]. Materials Letters, 2018, 220: 152-155.

[71] MATSUMOTO M, HUANG H, HARADA H, et al. On the phase transformation of single-crystal 4H-SiC during nanoindentation[J]. Journal of Physics D: Applied Physics, 2017, 50(26): 265303.

[72] LIU X S, ZHANG J R, XU B J, et al. Deformation of 4H-SiC: the role of dopants[J]. Applied Physics Letters, 2022, 120(5): 052105.

[73] LI J, YANG G, LIU X, et al. Dislocations in 4H silicon carbide[J]. Journal of Physics D: Applied Physics, 2022, 55(46): 463001.

[74] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157.

[75] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocation in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55: 334002.

张俊然, 朱如忠, 张玺, 张序清, 高煜, 陆赟豪, 皮孝东, 杨德仁, 王蓉. 线锯切片技术及其在碳化硅晶圆加工中的应用[J]. 人工晶体学报, 2023, 52(3): 365. ZHANG Junran, ZHU Ruzhong, ZHANG Xi, ZHANG Xuqing, GAO Yu, LU Yunhao, PI Xiaodong, YANG Deren, WANG Rong. Wire Saw Slicing and Its Application in Silicon Carbide Wafers Processing[J]. Journal of Synthetic Crystals, 2023, 52(3): 365.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!