线锯切片技术及其在碳化硅晶圆加工中的应用
[1] YANG D R. Progress in silicon materials: from microelectronics to photovoltaics and optoelectronics[M]. Beijing: Science Press, 2004.
[2] 张 玺, 王 蓉, 张序清, 等. 碳化硅单晶衬底加工技术现状及发展趋势[J]. 中央民族大学学报(自然科学版), 2021, 30(4):5-12.
[3] WU H. Wire sawing technology: a state-of-the-art review[J]. Precision Engineering, 2016, 43: 1-9.
[4] 王沛志. 单晶碳化硅的金刚石线锯切片表层裂纹损伤研究[D]. 济南: 山东大学, 2020.
[5] 李 伦, 李淑娟, 汤奥斐, 等. SiC单晶片线锯切割技术研究进展[J]. 机械强度, 2015, 37(5): 849-856.
[6] 何 超, 王英民, 李 斌, 等. SiC晶片加工技术现状与趋势[J]. 电子工业专用设备, 2016, 45(6): 1-6+54.
[7] HARDIN C W, QU J, SHIH A J. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers[J]. Materials and Manufacturing Processes, 2004, 19(2): 355-367.
[8] LI S, DU S, TANG A, et al. Force modeling and control of SiC monocrystal wafer processing[J]. Journal of Manufacturing Science and Engineering, 2015, 137(6): 061003.
[9] LI S J, WAN B, LANDERS R. Surface roughness optimization in processing SiC monocrystal wafers by wire saw machining with ultrasonic vibration[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228: 725-739.
[10] HUANG H, ZHANG Y X, XU X P. Experimental investigation on the machining characteristics of single-crystal SiC sawing with the fixed diamond wire[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 955-965.
[11] LI J, KAO I, PRASAD V. Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots: application to silicon wafer production[J]. Journal of Electronic Packaging, 1998, 120: 123-128.
[12] BHAGAVAT M, PRASAD V, KAO I. Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: modeling and finite element analysis[J]. Journal of Tribology, 2000, 122(2): 394-404.
[13] YANG F Q, KAO I. Free abrasive machining in slicing brittle materials with wiresaw[J]. Journal of Electronic Packaging, 2001, 123(3): 254-259.
[14] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9/10): 574-581.
[15] MARSHALL D, LAWN B, EVANS A. Elastic/plastic indentation damage in ceramics: the lateral crack system[J]. Journal of the American Ceramic Society, 1982, 65(11): 561-566.
[16] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.
[17] BUIJS M, HOUTEN K K V. A model for lapping of glass[J]. Journal of Materials Science, 1993, 28(11): 3014-3020.
[18] BUIJS M, KORPEL-VAN HOUTEN K. A model for three-body abrasion of brittle materials[J]. Wear, 1993, 162/163/164: 954-956.
[19] WIEDERHORN S M, HOCKEY B J. Effect of material parameters on the erosion resistance of brittle materials[J]. Journal of Materials Science, 1983, 18(3): 766-780.
[20] ROUTBORT J L, MATZKE H. On the correlation between solid-particle erosion and fracture parameters in SiC[J]. Journal of Materials Science, 1983, 18(5): 1491-1496.
[21] MUKHOPADHYAY A K, CHAKRABORTY D, SWAIN M V, et al. Scratch deformation behaviour of alumina under a sharp indenter[J]. Journal of the European Ceramic Society, 1997, 17(1): 91-100.
[22] MOORE M A, KING F S. Abrasive wear of brittle solids[J]. Wear, 1980, 60(1): 123-140.
[23] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.
[24] KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (a review)[J]. Journal of Superhard Materials, 2013, 35(5): 259-276.
[25] AREFIN S, LI X P, RAHMAN M, et al. The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(7): 655.
[26] LIU K, LI X P, LIANG S Y. The mechanism of ductile chip formation in cutting of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(9): 875-884.
[27] WU H, MELKOTE S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip[J]. Materials Science and Engineering: A, 2012, 549: 200-205.
[28] 霍凤伟. 硅片延性域磨削机理研究[D]. 大连: 大连理工大学, 2006.
[29] HUO F, JIN Z J, ZHAO F, et al. Experimental investigation of brittle to ductile transition of single crystal silicon by single grain grinding[J]. Key Engineering Materials, 2007, 329: 433-438.
[30] BIDIVILLE A, WASMER K, VAN DER MEER M, et al. Wire-sawing processes: parametrical study and modeling[J]. Solar Energy Materials and Solar Cells, 2015, 132: 392-402.
[31] BIERWISCH C, KBLER R, KLEER G, et al. Modelling of contact regimes in wire sawing with dissipative particle dynamics[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369(1945): 2422-30.
[32] ANSPACH O, HURKA B, SUNDER K. Structured wire: from single wire experiments to multi-crystalline silicon wafer mass production[J]. Solar Energy Materials and Solar Cells, 2014, 131: 58-63.
[33] WU H, YANG C, MELKOTE S N. Effect of reciprocating wire slurry sawing on surface quality and mechanical strength of as-cut solar silicon wafers[J]. Precision Engineering, 2014, 38(1): 121-126.
[34] LARS J, ERIK O J, TROND B, et al. Heat transfer during multiwire sawing of silicon wafers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3): 031006.
[35] ENOMOTO T, SHIMAZAKI Y, TANI Y, et al. Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot[J]. CIRP Annals, 1999, 48(1): 273-276.
[36] CHIBA Y, TANI Y, ENOMOTO T, et al. Development of a high-speed manufacturing method for electroplated diamond wire tools[J]. CIRP Annals, 2003, 52(1): 281-284.
[37] CHUNG C, TSAY G D, TSAI M H. Distribution of diamond grains in fixed abrasive wire sawing process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9): 1485-1494.
[38] WU H, MELKOTE S. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers[J]. Journal of Engineering Materials and Technology, 2012, 134: 041011.
[39] KIM D Y, LEE T K, PARK C J, et al. Evaluation of cutting ability of electroplated diamond wire using a test system and theoretical approach[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(4): 553-560.
[40] FURUTANI K, SUZUKI K. A desktop saw wire coating machine by using electrical discharge machining[C]//2009 IEEE International Conference on Control and Automation. December 9-11, 2009, Christchurch, New Zealand. IEEE, 2010: 2165-2170.
[41] ZHANG Z Y, XIAO B, DUAN D Z, et al. Investigation on the brazing mechanism and machining performance of diamond wire saw based on Cu-Sn-Ti alloy[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 211-219.
[42] MEINER D, SCHOENFELDER S, HURKA B, et al. Loss of wire tension in the wire web during the slurry based multi wire sawing process[J]. Solar Energy Materials and Solar Cells, 2014, 120: 346-355.
[43] KIM H, KIM D, KIM C, et al. Multi-wire sawing of sapphire crystals with reciprocating motion of electroplated diamond wires[J]. CIRP Annals, 2013, 62(1): 335-338.
[44] KAMIYA O, MIYANO Y, TAKAHASHI M, et al. Soldering process and cutting performance of micro saw wire bonded with diamond grains[J]. International Journal of Modern Physics: Conference Series, 2012, 6: 491-496.
[45] KUMAR A, KAMINSKI S, MELKOTE S N, et al. Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers[J]. Wear, 2016, 364/365: 163-168.
[46] PALA U, SSSMAIER S, KUSTER F, et al. Experimental investigation of tool wear in electroplated diamond wire sawing of silicon[J]. Procedia CIRP, 2018, 77: 371-374.
[47] SCHWINDE S, BERG M, KUNERT M. New potential for reduction of kerf loss and wire consumption in multi-wire sawing[J]. Solar Energy Materials and Solar Cells, 2015, 136: 44-47.
[48] MLLER H J. Basic mechanisms and models of multi-wire sawing[J]. Advanced Engineering Materials, 2004, 6(7): 501-513.
[49] YU X G, WANG P, LI X Q, et al. Thin Czochralski silicon solar cells based on diamond wire sawing technology[J]. Solar Energy Materials and Solar Cells, 2012, 98: 337-342.
[50] JIA Z, ZHAO L Q, REN Z, et al. Investigation into influence of feed speed on surface roughness in wire sawing[J]. Materials and Manufacturing Processes, 2015, 30: 875 - 881.
[51] 张 立, 于晋京, 李耀东, 等. 切割速度对硅片翘曲的影响[J]. 半导体技术, 2011, 36(5): 368-372.
[52] CHUNG C, KAO I. Modeling of axially moving wire with damping: eigenfunctions, orthogonality and applications in slurry wiresaws[J]. Journal of Sound and Vibration, 2011, 330(12): 2947-2963.
[53] KIM D, KIM H, LEE S, et al. Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(2): 117-121.
[54] LI Z, WANG M J, CAI Y J, et al. Experimental study on surface topography and fracture strength of worn saw wire in multi-wire sawing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 4125-4132.
[55] MENG H C, ZHOU L. Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement[J]. Silicon, 2014, 6(2): 129-135.
[56] POGUE V, MELKOTE S N, DANYLUK S. Residual stresses in multi-crystalline silicon photovoltaic wafers due to casting and wire sawing[J]. Materials Science in Semiconductor Processing, 2018, 75: 173-182.
[57] WRZNER S, HERMS M, KADEN T, et al. Characterization of the diamond wire sawing process for monocrystalline silicon by Raman spectroscopy and SIREX polarimetry[J]. Energies, 2017, 10(4): 414.
[58] LIU T Y, GE P Q, BI W B, et al. Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing[J]. Materials Science in Semiconductor Processing, 2017, 57: 147-156.
[59] SUZUKI T, NISHINO Y, YAN J W. Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon[J]. Precision Engineering, 2017, 50: 32-43.
[60] XIAO H P, WANG H R, YU N, et al. Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers[J]. Journal of Materials Processing Technology, 2019, 273: 116267.
[61] BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing[J]. International Journal of Machine Tools and Manufacture, 2008, 48(1): 95-106.
[62] BIDIVILLE A, WASMER K, MICHLER J, et al. Mechanisms of wafer sawing and impact on wafer properties[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(8): 563-572.
[63] ZHAO H X, JIN R, WU S, et al. PDE-constrained Gaussian process model on material removal rate of wire saw slicing process[J]. Journal of Manufacturing Science and Engineering, 2011, 133(2): 021012.
[64] ZHU L Q, KAO I. Galerkin-based modal analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw[J]. Journal of Sound and Vibration, 2005, 283(3/4/5): 589-620.
[65] LIEDKE T, KUNA M. A macroscopic mechanical model of the wire sawing process[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9): 711-720.
[66] 王肖烨. SiC单晶体超声线锯切割技术及实验研究[D]. 西安: 西安理工大学, 2013.
[67] 靳霄曦, 徐 伟, 魏汝省, 等. 高线速下碳化硅单晶的快速平坦化切割[J]. 超硬材料工程, 2019, 31(1): 30-33.
[68] 仲冬维. SiC陶瓷单颗粒刻划磨粒磨损特性仿真及实验研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
[69] 孟 磊. 碳化硅的线锯切片技术与加工机理研究[D]. 济南: 山东大学, 2011.
[70] YAO T T, YIN D Q, SAITO M, et al. Nanoindentation-induced phase transformation between SiC polymorphs[J]. Materials Letters, 2018, 220: 152-155.
[71] MATSUMOTO M, HUANG H, HARADA H, et al. On the phase transformation of single-crystal 4H-SiC during nanoindentation[J]. Journal of Physics D: Applied Physics, 2017, 50(26): 265303.
[72] LIU X S, ZHANG J R, XU B J, et al. Deformation of 4H-SiC: the role of dopants[J]. Applied Physics Letters, 2022, 120(5): 052105.
[73] LI J, YANG G, LIU X, et al. Dislocations in 4H silicon carbide[J]. Journal of Physics D: Applied Physics, 2022, 55(46): 463001.
[74] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157.
[75] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocation in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55: 334002.
张俊然, 朱如忠, 张玺, 张序清, 高煜, 陆赟豪, 皮孝东, 杨德仁, 王蓉. 线锯切片技术及其在碳化硅晶圆加工中的应用[J]. 人工晶体学报, 2023, 52(3): 365. ZHANG Junran, ZHU Ruzhong, ZHANG Xi, ZHANG Xuqing, GAO Yu, LU Yunhao, PI Xiaodong, YANG Deren, WANG Rong. Wire Saw Slicing and Its Application in Silicon Carbide Wafers Processing[J]. Journal of Synthetic Crystals, 2023, 52(3): 365.