光谱学与光谱分析, 2023, 43 (4): 1298, 网络出版: 2023-05-03  

基于拉曼光谱分析技术的塑化剂检测研究进展

Research Progress of Plasticizer Detection Based on Raman Spectroscopy
作者单位
1 浙江农林大学光机电工程学院, 浙江 杭州 311300
2 江西农业大学工学院, 江西 南昌 330045
摘要
塑化剂是一种高分子材料助剂, 广泛应用于人民生活工作中的各领域, 长期或者高浓度接触对人体健康有巨大的潜在危害, 如今塑化剂危害事件频频发生, 对塑化剂的检测严控已成重中之重。 目前, 塑化剂的检测方法主要有气相色谱法、 气相色谱-质谱联用法及高效液相色谱法等, 但上述方法存在前处理繁琐, 技术要求高, 灵敏度低和检测耗时长等缺点, 不利于塑化剂的快速检测。 拉曼光谱分析技术具有无需样品前处理、 检测速度快、 能反应分子指纹信息等特点, 可以对物质进行定性定量检测分析, 其中表面增强拉曼光谱分析技术作为拉曼光谱分析技术的分支, 具有超高灵敏度、 高选择性和非侵入性等优势, 突破了普通拉曼光谱分析技术固有低灵敏度的局限性, 可以获得普通拉曼光谱分析技术所不易得到的结构信息, 在塑化剂检测中逐渐发挥优势。 文章简述了拉曼光谱分析技术的原理, 概述了普通拉曼光谱分析技术在塑化剂光谱特征峰确认及较高浓度塑化剂检测中的应用, 以及表面增强拉曼光谱分析技术在低浓度塑化剂检测中的应用。 如今利用表面增强拉曼光谱分析技术检测塑化剂所用的基底基本都为金纳米和银纳米为主, 按表面增强拉曼光谱分析技术中所使用的基底种类(Au纳米粒子、 Ag纳米粒子、 Au@Ag纳米)分别综述了表面增强拉曼光谱分析技术在微量及痕量塑化剂检测中的研究进展。 最后, 指出了塑化剂拉曼光谱检测存在的问题, 并展望了今后的发展趋势, 以期为今后的塑化剂检测研究提供参考和解决思路。
Abstract
The plasticizer is a kind of polymer material additive widely used in various fields of people's life and work, long-term or high concentration of exposure to human health has huge potential harm. Now plasticizer harm events occur frequently, and the detection of plasticizers has become a top priority. Currently, the main detection methods of plasticizers are gas chromatography, gas chromatography-mass spectrometry and high-performance liquid chromatography. However, the above methods have disadvantages such as cumbersome pre-treatment, high technical requirements, low sensitivity and long detection time, which is not conducive to the rapid detection of plasticizer. Raman spectrum analysis technology has no sample preparation, fast detection and molecular fingerprint information and other characteristics, can respond to qualitative-quantitative analysis to determine the material, the surface-enhanced Raman spectroscopy analysis technology asa branch of Raman spectrum analysis technology, has a high sensitivity, high selectivity and the advantages of the non-invasive, It breaks through the limitation of the inherent low sensitivity of ordinary Raman spectroscopy. It can obtain the structure information which is difficult to be obtained by ordinary Raman spectroscopy, which gradually plays an advantage in plasticizer detection. This paper briefly describes the principle of Raman spectrum analysis technology, summarizes the common Raman spectroscopy analysis technology in the plasticizer characteristic peak identification and quantitative test of the high content of plasticizer, and the application of surface-enhanced Raman spectroscopy in the detection of low-content plasticizers. Nowadays, the substrates used for plasticizer detection using surface-enhanced Raman spectroscopy are mainly gold and silver nanoparticles. In this paper, the research progress of surface-enhanced Raman spectroscopy in trace and trace plasticizers is reviewed according to the types of substrates used in surface-enhanced Raman spectroscopy (Au nanoparticles, Ag nanoparticles, Au@Ag nanoparticles). Finally, the existing problems in the detection of plasticizers by Raman spectroscopy are pointed out, and the development trend in the future has been prospected to provide reference and solutions for the study of plasticizer detection in the future.
参考文献

[1] LIU Xiao-wen, WANG Jiao-jiao, QI Cheng-mei, et al(刘小文, 王娇娇, 齐成媚, 等). Science and Technology of Food Industry(食品工业科技), 2014, 35(16): 353.

[2] Li J H, Ko Y C. Kaohsiung Journal of Medical Sciences, 2012, 28(7): S17.

[3] RUAN Hua, RONG Wei-guang, MA Yong-jian, et al(阮 华, 荣维广, 马永建, 等). Chinese Journal of Food Hygiene(中国食品卫生杂志), 2014, 26(2): 193.

[4] YU Shao-mei(于韶梅). China Condiment(中国调味品), 2019, 44(7): 171.

[5] Gonzalez-Salamo J, Socas-Rodriguez B, et al. Current Opinion in Food Science, 2018, 22: 122.

[6] ZHANG Yu-huan, LEI Ya-nan, LU Hao, et al(张玉环, 雷亚楠, 鲁 皓, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2021, 12(1): 202.

[7] WU Li-li(吴莉莉). China Plastics Industry(塑料工业), 2011, 39(S1): 11.

[8] WANG Yao-hui, FANG Yuan, DING Song-yuan, et al(王耀辉, 方 圆, 丁松园, 等). Journal of Xiamen University(Natural Science)[厦门大学学报(自然科学版)], 2020, 59(5): 713.

[9] ZHANG Yan, YIN Li-hui, FENG Fang(张 雁, 尹利辉, 冯 芳). Chinese Journal of Pharmaceutical Analysis(药物分析杂志), 2009, 29(7): 1236.

[10] SONG Yi-huan, SUN Xiao-hong, XIE Feng(宋移欢, 孙晓红, 谢 锋). The Food Industry(食品工业), 2020, 41(7): 245.

[11] LIU Yu, JIANG Xiao-jun, FAN Ya, et al(刘 瑜, 蒋晓军, 范 雅, 等). The Journal of Light Scattering(光散射学报), 2015, 27(3): 219.

[12] JI Li-jun, XIE Yun-fei, YAO Wei-rong(纪丽君, 谢云飞, 姚卫蓉). Science and Technology of Food Industry(食品工业科技), 2012, 33(15): 297.

[13] XU Xin-xia, SHEN Xue-jing, CHEN Ji-wen, et al(徐昕霞, 沈学静, 陈吉文, 等). Metallurgical Analysis(冶金分析), 2021, 41(2): 16.

[14] QIU You-li, ZENG Ya-ling, JIANG Long, et al(邱尤丽, 曾娅玲, 姜 龙, 等). Chinese Journal of Luminescence(发光学报), 2015, 36(8): 976.

[15] Ji L J, Sun Y Y, Xie Y F, et al. Vibrational Spectroscopy, 2015, 79: 44.

[16] Rong Y, Ali S, Ouyang Q, et al. Journal of Food Composition and Analysis, 2021, 100: 103929.

[17] Li J, Hu X, Zhou Y, et al. ACS Applied Nano Materials, 2019, 2(5): 2743.

[18] HUANG Yi-wei, LIN Jia-sheng, XIE Tang-tang, et al(黄艺伟, 林嘉盛, 谢堂堂, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(3): 760.

[19] Peng B, Li G, Li D, et al. ACS Nano, 2013, 7(7): 5993.

[20] ZHANG Le, WANG Qian-qian, WANG Juan, et al(张 乐, 汪倩倩, 王 娟, 等). Applied Chemical Industry(应用化工), 2020, 49(6): 1576.

[21] Wu Y, Yu W, Yang B, et al. Analyst, 2018, 143(10): 2363.

[22] Wang C M, Roy P K, Juluri B K, et al. Sensors and Actuators B: Chemical, 2018, 261: 218.

[23] ZHOU Ya-ru, HU Xiao-yan, WANG Xin-ru, et al(周亚茹, 胡小燕, 王欣如, 等). Modern Chemical Industry(现代化工), 2019, 39(3): 113.

[24] HU Xiao-yan, WANG Xin-ru, ZHANG Le, et al(胡小燕, 王欣如, 张 乐, 等). Applied Chemical Industry(应用化工), 2019, 48(5): 1237.

[25] Liu J, Li J, Li F, et al. Analytical and Bioanalytical Chemistry, 2018, 410(21): 5277.

[26] WANG Juan, ZHOU Ya-ru, WANG Qian-qian, et al(王 娟, 周亚茹, 汪倩倩, 等). Chinese Journal of Analytical Chemistry(分析化学), 2020, 48(12): 1625.

[27] Wu L, Wang W, Zhang W, et al. NPG Asia Materials, 2018, 10: e462.

[28] LAI Yu-ming(赖宇明). Modern Chemical Industry(现代化工), 2021, 41(4): 234.

[29] XU Zhen-yi, WU Yu-qiong, FAN Li, et al(许祯毅, 吴玉琼, 范 俐, 等). Food Research and Development(食品研究与开发), 2021, 42(3): 207.

[30] Li X, Wang X, Li L, et al. Talanta, 2015, 131: 354.

[31] Yang Y Y, Li Y T, Li X J, et al. Chemical Engineering Journal, 2020, 402: 125179.

[32] Yang Y Y, Li Y T, Zhai W, et al. Analytical Chemistry, 2021, 93(2): 946.

[33] Xu S, Li H, Guo M, et al. Analyst, 2021, 146(15): 4858.

[34] Zuo Z, Zhu K, Ning L, et al. Applied Surface Science, 2015, 325: 45.

[35] Wu M C, Lin M P, Li T H, et al. Japanese Journal of Applied Physics, 2018, 57(4): 04FM07.

[36] Tu D, Garza J T, Cote G L. RSC Advances, 2019, 9(5): 2618.

[37] Zhou Y, Li J, Zhang L, et al. Analytical and Bioanalytical Chemistry, 2019, 411(22): 5691.

[38] Hu X, Wang X, Ge Z, et al. Analyst, 2019, 144(12): 3861.

[39] WANG Xin-ru, ZHANG Le, GE Zi-pan, et al(王欣如, 张 乐, 葛子盼, 等). Modern Chemical Industry(现代化工), 2020, 40(2): 222.

[40] GE Zi-pan, ZHANG Le, WANG Xin-ru, et al(葛子盼, 张 乐, 王欣如, 等). New Chemical Materials(化工新型材料), 2020, 48(6): 236.

[41] Wang Q, Wang J, Li M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 119131.

[42] Wang J, Cui F, Chu S, et al. Chempluschem, 2014, 79(5): 684.

[43] Cao Q, Che R. ACS Applied Materials & Interfaces, 2014, 6(10): 7020.

[44] Xiang Y, Li M, Guo X, et al. Sensors and Actuators B: Chemical, 2018, 262: 44.

王一韬, 吴成招, 胡栋, 孙通. 基于拉曼光谱分析技术的塑化剂检测研究进展[J]. 光谱学与光谱分析, 2023, 43(4): 1298. WANG Yi-tao, WU Cheng-zhao, HU Dong, SUN Tong. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1298.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!