光散射学报, 2022, 34 (3): 187, 网络出版: 2023-02-04  

Fe2O3@Ag纳米棒复合阵列的构筑及其SERS性能研究

Preparation of Ordered Fe2O3@Ag nanorod arrays for Surface-enhanced Raman Scattering
作者单位
安徽农业大学轻纺工程与艺术学院, 合肥 241000
摘要
以均匀有序的聚丙烯腈(PAN)纳米柱阵列薄膜为基材, 结合水热法以及离子溅射方法制备大面积有序的Fe2O3@Ag纳米棒复合结构阵列。利用扫描电子显微镜、透射电子显微镜、能谱仪、紫外可见光吸收光谱仪、X射线衍射仪以及拉曼光谱仪对复合材料进行表征。以罗丹明6G(R6G)和4-氨基苯硫酚(4-ATP)为探针分子, 对结构阵列的表面增强拉曼散射(SERS)性能进行研究。结果表明,制备的结构阵列具有较高的SERS活性和信号均匀性, 对R6G和4-ATP可以实现10-10 M和10-9 M低浓度探测。以10-6 M的4-ATP为探针分子, 计算得到基底的SERS信号相对标准偏差(RSD)值为7.5%。所制备的复合结构在SERS检测中具有良好的潜力。
Abstract
Large area ordered Fe2O3@Ag nanorod arrays were prepared via hydrothermal method and ion sputtering method based on the uniformly ordered polyacrylonitrile (PAN) nanopillar array films. The morphology and structure of the substrate were characterized by scanning electron microscope, transmission electron microscope, energy dispersive spectrometer, UV-Vis absorption spectrometer and X-ray diffractometer. The SERS activity of the Fe2O3@Ag nanorod arrays was studied by Raman spectrometer with rhodamine 6G (R6G) and 4-Aminothiophenol (4-ATP) as probe molecules. As a result, 10-10 M R6G and 10-9 M 4-ATP can be SERS recognized respectively. In addition, with 10-6 M 4-ATP as the probe molecule, the relative standard deviation (RSD) of SERS signal is 7.5%, which shows that the prepared substrate has high SERS activity and signal uniformity. Therefore, the prepared ordered Fe2O3@Ag nanorod arrays have great potential in SERS detection.
参考文献

[1] KNEIPP K,YANG W, KNEIPP H, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)[J]. Phys. Rev. Lett., 1997, 78(9): 1667-1670.

[2] LANGER J, ABEASTURI D J, AIZPURUAL J, et al. Present and Future of Surface Enhanced Raman Scattering[J]. ACS Nano, 2020, 14(1):28-117.

[3] 刘洋,金师磊,韩淑怡,等. Fe3O4/Cu2O-Ag可回收型SERS基底的制备及性能研究[J]. 吉林师范大学学报(自然科学版),2022,43 (01):18-22. ( LIU Y, JIN S L, HAN S Y, et al. Preparation and study of SERS properties of recyclable Fe3O4/Cu2O-Ag nanocomposites [J]. Jilin Normal University Journal (Natural Science Edition), 2022,43 (01):18-22.)

[4] NAQVI T K, BAJPAI A, MORAM S, et al. Ultra-sensitive Reusable SERS Sensor for Multiple Hazardous Materials Detection on Single Platform[J]. J. Hazard. Mater., 2020, 407:124353.

[5] GUSELNIKOVA O, LIM H, NA J, et al. Enantioselective SERS Sensing of Pseudoephedrine in Blood Plasma Biomatrix by Hierarchical Mesoporous Au Films Coated with a Homochiral MOF[J]. Biosens. Bioelectron., 2021, 180: 113109.

[6] BEYENE A B, HWANG B J, TEGEGNE W A, et al. Reliable and sensitive detection of pancreatic cancer marker by gold nanoflower-based SERS mapping immunoassay[J]. Microchem. J., 2020, 158: 105099.

[7] LIU Y, MA H, HAN XX, et al.Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer[J]. Mater. Horiz., 2021,8:370-382.

[8] YANG N, YOU T, GAO Y, et al. One-Step Preparation Method of Flexible Metafilms on the Water-Oil Interface: Self-Assembly Surface Plasmon Structures for Surface-Enhanced Raman Scattering Detection[J]. Langmuir, 2019, 35(13):4626-4633.

[9] QU Y Q, HE L L. Development of a facile rolling method to amplify an analyte's weak SERS activity and its application for chlordane detection[J].Appl. Catal., B, 2020, 12: 433-439.

[10] LAO Z, ZHENG Y, DAI Y, et al. Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS[J]. Adv. Funct. Mater., 2020, 30(15):1-10.

[11] LUO H R, WANG X H, HUAN Y Q, et al. Rapid and sensitive surface‐enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice[J]. J. Sci. Food Agric., 2018, 98(10):3892-3898.

[12] HE L L, LIU C Q, TANG J, et al. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis[J]. Appl. Surf. Sci., 2018, 434:265-272.

[13] WANG B, XIE Y, YANG T P, et al. Synthesis and photocatalytic properties of flexible Cu2O Thin film[J]. Surf. Eng., 2020, 36(2):199-205.

[14] ZHANG F, LI Y H, QI M Y, et al. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 redution[J]. Appl. Catal., B, 2020, 286: 31126-31129.

[15] MA C, YANG Z, WANG W, et al. Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity[J]. J. Mater. Chem. C, 2020, 8(8):2888-2898.

[16] 付紫微, 逯夏平, 喻倩, 等. 多孔Fe2O3-Ag纳米复合材料的制备及其在表面增强Raman散射光谱中应用[J]. 硅酸盐学报, 2020, 48(4):477-482.( FU Z W, LU X P, YU Q, et al. Synthesis of Porous Fe2O3-Ag Nanocomposites and Its Application in Surface-Enhanced Raman Scattering Spectroscopy[J].Journal of the Chinese Ceramic Society, 2020, 48(4):477-482.)

[17] YANG B, WANG Y, GUO S, et al. Charge transfer study for semiconductor and semiconductor/ metal composites based on surface-enhanced Raman scattering[J]. Bull. Korean Chem. Soc.,2021.

[18] HALDAVNEKAR R, VENKATAKRISSHNAN K, TAN B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection[J]. Nat. Commun., 2018, 9.

[19] XU J, LI X, WANG Y, et al. Flexible and reusable cap-like thin Fe2O3 film for SERS applications[J]. Nano Res., 2019, 12(2):381-388.

[20] LIU W, WANG X, ZHAO Z., et al. Tailored SiO2-TiO2 Aerogel/Ag Flexible Films as Stable SERS Substrates for Hazardous Materials Detection[J]. Adv. Mater. Technol. (Weinheim, Ger.),2021, 1.

[21] LIU Q, CHEN P, YE Y, et al. 3D Hierarchical Gallium Oxynitride Nanostructures Decorated with Ag Nanoparticles Applied as Recyclable Substrates for Ultrasensitive SERS Sensing[J]. Adv. Mater. Interfaces, 2019, 6(16): 1900659.

[22] WANG J, NING A. Enhanced efficient and sensitive SERS sensing via controlled Ag-nanoparticle-decorated 3D flower-like ZnO hierarchical microstructure[J]. Micro Nano Lett.,2020, 15(15):1126-1129.

[23] XU J T, LI X T, WANG Y X, et al. Flexible and reusable cap-like thin Fe2O3 film for SERS applications[J]. Nano Res., 2019, 12(2):381-388.

[24] ZHANG Z, LI X P, ZHONG C, et al. Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction[J]. Angew. Chem., Int. Ed., 2020, 59(18): 7245-7250.

[25] ZHENG X G, HUANG M, YOU Y H, et al. Core-shell structured alpha-Fe2O3@CeO2 heterojunction for the enhanced visible-light photocatalytic activity[J]. Mater. Res. Bull., 2018, 101(5): 20-28.

[26] NUR R, HENDRIK O, LINTAN LENY Yi. Cyanamide-Modified Iron(III) Oxide Photocatalysts for Degradation of Phenol in the Presence of Urea and Formaldehyde[J]. Sains Malays., 2021, 50: 3569-3582.

[27] LI D J, WU A X, WAN Q, et al. Controllable fabrication of polymeric nanowires by NIL technique and self-assembled AAO template for SERS application[J]. Sci. Rep., 2021, 11(1):1-8.

[28] LI Z, JIANG S, HUO Y, et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis[J]. Nanoscale, 2018, 10(13):5897-5905.

[29] XIE Z, ZHAO F T, ZOU S M,et al. TiO2 nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates[J]. J. Alloys Compd., 2021, 861.

[30] LI Y, LU R, SHEN J, et al. Electrospun flexible poly(bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection[J]. Analyst, 2017, 142(24):4756-4764.

[31] 倪宇欣, 张晨杰, 袁亚仙, 等. 纳米ZnO的表面增强拉曼散射效应来源研究[J]. 化学学报, 2019, 77(7): 641-646. ( NI Y X, ZHANG C J, YUAN Y X, et al. Determination on Origination of Surface Enhanced Raman Scattering Effect on Nano ZnO Substrate[J]. Acta Chimica Sinica, 2019, 77(7): 641-646.)

范婷婷, 黄小巧, 吴康, 蔡莉, 李中波. Fe2O3@Ag纳米棒复合阵列的构筑及其SERS性能研究[J]. 光散射学报, 2022, 34(3): 187. FAN Tingting, HUANG Xiaoqiao, WU Kang, CAI Li, LI Zhongbo. Preparation of Ordered Fe2O3@Ag nanorod arrays for Surface-enhanced Raman Scattering[J]. The Journal of Light Scattering, 2022, 34(3): 187.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!