基于会聚太赫兹光场纵向分量的物质琼斯矩阵测量技术特邀研究论文
1 引言
随着远红外光学技术的发展,太赫兹(1 THz=1012 Hz)频率范围内的偏振光谱技术正在成为一个重要的研究方向并受到了学者们的广泛关注[1-2]。众所周知,光场的偏振态会受到物质二向色性[3]、双折射[4-6]、旋光[7-8]效应等的影响,因此偏振光谱技术可以用于检测不同类型材料的各向异性特征。目前,此技术已经在超材料[9-10]、半导体[11]、生物分子[12-13]、聚合物复合材料[14-15]和液晶[16-17]等各个研究领域得到了广泛应用。描述物质对光场偏振态影响的方法一般有两种,即穆勒矩阵[18]和琼斯矩阵[19]。对于相干光场,琼斯矩阵方法的实用性更强,它可以更加简单直观地描述物质对入射光场的矢量传输特性,因此能够准确测定物质的琼斯矩阵对发展偏振光谱技术是十分重要的。
在太赫兹波段提取物质琼斯矩阵的前提是能够准确测量太赫兹光场的偏振态。目前测量太赫兹偏振态的主流技术主要包括特殊结构的光导天线和改进的电光采样技术。例如,2015年Niehues等[20]利用四电极的光导天线测量了太赫兹偏振片对太赫兹光场的调制。2018年Sanjuan等[21]利用<111>方向的ZnTe晶体改进了太赫兹时域光谱系统,通过调整飞秒激光的偏振态来产生与探测具有不同偏振态的宽带太赫兹脉冲。2019年Zhao等[22]利用传统的电光采样技术与宽带太赫兹偏振片相配合,实现了对太赫兹光场偏振态的测量并成功提取了钛宝石的琼斯矩阵。可以说这些工作对发展太赫兹偏振光谱技术、提取物质的各项异性特征都起到了重要的推动作用。然而,在这些传统技术中,对太赫兹偏振态的获取主要通过分别测量太赫兹水平和竖直电场分量实现,因此通常需要对太赫兹系统进行精密的调节。例如,采用四电极光导天线技术时,需要保证太赫兹焦斑与探测光同时准确聚焦于光导天线的中心;采用改进的电光采样技术时,需要不断调整探测晶体的晶向角度或调整探测光的偏振态,以便于对不同的太赫兹偏振分量进行响应。这些操作有可能对太赫兹偏振态的测量引入误差,进而影响琼斯矩阵提取的准确性。
本文提出了一种新颖的检测手段,可以对物质在太赫兹波段的琼斯矩阵进行准确测定。所提方法利用太赫兹面阵成像系统相干测量了会聚太赫兹光场的纵向分量
2 方法基本原理
2.1 琼斯矩阵的提取方法
在提取琼斯矩阵的元素时,首先认为入射光的琼斯矢量为
进一步,认为入射光琼斯矢量仍为
式中:
进而可推导出琼斯矩阵中的元素,
2.2 基于太赫兹光场纵向分量的偏振信息提取方法
在测量太赫兹光场的琼斯矢量时,本课题组在2018年提出了利用太赫兹面阵成像系统测量并分析会聚太赫兹光场的纵向分量

图 1. 基于会聚太赫兹光场纵向场分量的偏振检测系统
Fig. 1. Schematic of the polarization detection system based on the longitudinal field component of a converging terahertz (THz) field
为了说明所提方法是如何通过
式中:
现在可以认为已经获得了任意偏振态下太赫兹纵向场
式中:
3 模拟结果
3.1 太赫兹光场偏振态测量的模拟结果
首先在模拟上验证对太赫兹光场偏振态进行测量是可行的。

图 2. 太赫兹光束通过偏振片和波片后的偏振态提取模拟结果。(a)X线偏振太赫兹光束通过 偏振片后的偏振信息提取结果;(b)X线偏振太赫兹光束通过1/4波片后的偏振信息提取结果
Fig. 2. Simulated results for extracting the polarizations of THz beams after passing through a polarizer and wave plate. (a) Simulated results for extracting the polarization of X-linearly polarized THz beams after passing through a polarizer with a 45° orientation; (b) simulated results for extracting the polarization of X-linearly polarized THz beams after passing through a 1/4 wave plate
为了进一步验证此太赫兹光场偏振测量方法的可行性,对X线偏振太赫兹波通过1/4波片后的偏振信息进行提取。1/4波片的中心频率预设为0.75 THz,认为波片光轴与X轴夹角为
式中:
3.2 琼斯矩阵提取的模拟结果
在获得了太赫兹光场的偏振信息后,便可以利用2.1节描述的算法提取样品琼斯矩阵中的各个元素,这里在模拟上对太赫兹波片尝试进行处理,验证对琼斯矩阵进行提取的有效性。如

图 3. 对太赫兹波片琼斯矩阵的模拟结果。(a)模拟过程示意图;(b)入射和两次出射太赫兹光场在0.55,0.75,0.95 THz处 的振幅相位分布;(c)4个琼斯矩阵元素随频率变化的曲线
Fig. 3. Simulated results for Jones matrix of a THz wave plate. (a) Schematic of the simulation process; (b) amplitude and phase distributions of at 0.55, 0.75, 0.95 THz for incident and two transmitted THz fields; (c) curves of four Jones matrix elements as functions of the frequency
在进行第一次测量之后,获取太赫兹光场的
3 实验结果与讨论
在实验中,应用太赫兹面阵成像系统对所提样品琼斯矩阵检测方法进行验证,实验系统的光路如

图 4. 实验系统及对太赫兹偏振片的测量结果。(a)利用太赫兹面阵成像系统测量太赫兹光场 分量的示意图;(b)在0.55,0.75,0.95 THz处 的振幅相位分布;(c)从太赫兹入射光场 和通过 、 偏振片后太赫兹光场 提取到的振幅比 ;(d)相应的相位差
Fig. 4. Experimental system and measurement for the THz polarizers. (a) Schematic of a THz focal-plane imaging system for measuring the component of a THz field; (b) amplitude and phase distributions of the component at 0.55, 0.75, 0.95 THz; (c) extracted from components of the incident THz field and the transmitted THz fields through 45° and 135° polarizers; (d) corresponding
利用偏振信息提取方法和琼斯矩阵计算方法对样品的琼斯矩阵元素进行提取,结果如

图 5. 太赫兹偏振片的琼斯矩阵测量结果。(a)太赫兹 偏振片的琼斯矩阵各个元素随频率变化的振幅和相位曲线;(b)太赫兹 偏振片的琼斯矩阵各个元素随频率变化的振幅和相位曲线
Fig. 5. Experimental results of Jones matrix elements for THz polarizers. (a) Amplitude and phase curves of the Jones matrix elements of a THz polarizer with 45° orientation as function of the frequency; (b) amplitude and phase curves of the Jones matrix elements of a THz polarizer with 30° orientation as function of the frequency
为了明确所提检测方法的测量精度,将太赫兹偏振片的透光方向从

图 6. 琼斯矩阵检测方法灵敏度的测试。(a)~(d) 、 、 和 的振幅在0.75 THz处的变化
Fig. 6. Sensitivity testing of the Jones matrix measurement method. (a)‒(d) Amplitude of , , , and at 0.75 THz
还对中心频率为0.75 THz的太赫兹波片进行了琼斯矩阵的测量。在实验中,波片的主轴与X方向夹角选定为

图 7. 太赫兹波片的琼斯矩阵测量结果。(a)波片角度为 时琼斯矩阵元素的振幅和相位随频率变化的曲线;(b)波片角度为 时琼斯矩阵元素的振幅和相位随频率变化的曲线
Fig. 7. Measurement for the Jones matrix of THz wave plates. (a) Amplitude and phase curves of the Jones matrix elements of the wave plate with 30° orientation as function of the frequency; (b) amplitude and phase curves of the Jones matrix elements of the wave plate with 60° orientation as function of the frequency
4 结论
提出了一种基于会聚太赫兹光场纵向分量
[1] Nagashima T, Tani M, Hangyo M. Polarization-sensitive THz-TDS and its application to anisotropy sensing[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(11): 740-775.
[2] 孙一健, 王继芬. 太赫兹时域光谱技术在食品、药品和环境领域中的应用研究进展[J]. 激光与光电子学进展, 2022, 59(16): 1600003.
[3] Ren L, Pint C L, Booshehri L G, et al. Carbon nanotube terahertz polarizer[J]. Nano Letters, 2009, 9(7): 2610-2613.
[4] Hsieh C F, Pan R P, Tang T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate[J]. Optics Letters, 2006, 31(8): 1112-1114.
[5] Kim Y, Yi M, Kim B G, et al. Investigation of THz birefringence measurement and calculation in Al2O3 and LiNbO3[J]. Applied Optics, 2011, 50(18): 2906-2910.
[6] Masson J B, Gallot G. Terahertz achromatic quarter-wave plate[J]. Optics Letters, 2006, 31(2): 265-267.
[7] Aschaffenburg D J, Williams M R C, Talbayev D, et al. Efficient measurement of broadband terahertz optical activity[J]. Applied Physics Letters, 2012, 100(24): 241114.
[8] Singh R, Plum E, Zhang W L, et al. Highly tunable optical activity in planar achiral terahertz metamaterials[J]. Optics Express, 2010, 18(13): 13425-13430.
[9] Zhou J F, Chowdhury D R, Zhao R K, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review. B, Condensed Matter, 2012, 86(3): 035448.
[10] 杨森, 袁苏, 王佳云. 一种光激发可切换的双频太赫兹超材料吸收器[J]. 光学学报, 2021, 41(2): 0216001.
[11] Shuvaev A M, Astakhov G V, Pimenov A, et al. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range[J]. Physical Review Letters, 2011, 106(10): 107404.
[12] Acbas G, Niessen K A, Snell E H, et al. Optical measurements of long-range protein vibrations[J]. Nature Communications, 2014, 5(1): 1-7.
[13] Niessen K A, Xu M Y, George D K, et al. Protein and RNA dynamical fingerprinting[J]. Nature Communications, 2019, 10(1): 1-10.
[14] Okano M, Fujii M, Watanabe S. Anisotropic percolation conduction in elastomer-carbon black composites investigated by polarization-sensitive terahertz time-domain spectroscopy[J]. Applied Physics Letters, 2017, 111(22): 221902.
[15] Okano M, Watanabe S. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy[J]. Scientific Reports, 2016, 6(1): 1-11.
[16] Rutz F, Hasek T, Koch M, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911.
[17] Vieweg N, Fischer B M, Reuter M, et al. Ultrabroadband terahertz spectroscopy of a liquid crystal[J]. Optics Express, 2012, 20(27): 28249-28256.
[18] 何思源, 周芷茵, 田小凡, 等. 不同入射角下物体的穆勒矩阵[J]. 激光与光电子学进展, 2021, 58(17): 1726001.
[19] GerrardA, BurchJ M. Introduction to matrix methods in optics[M]. New York: Dover, 1994.
[20] Niehues G, Funkner S, Bulgarevich D S, et al. A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis[J]. Optics Express, 2015, 23(12): 16184-16195.
[21] Sanjuan F, Gaborit G, Coutaz J L. Full electro-optic terahertz time-domain spectrometer for polarimetric studies[J]. Applied Optics, 2018, 57(21): 6055-6060.
[22] Zhao G Z, Savini G, Yu Y, et al. A dual-port THz Time Domain Spectroscopy System optimized for recovery of a sample’s Jones matrix[J]. Scientific Reports, 2019, 9(1): 1-9.
[23] 廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 61-62.
LiaoY B. Polarization optics[M]. Beijing: Science Press, 2003: 61-62.
[24] Shang Y J, Wang X K, Sun W F, et al. Polarization determination based on the longitudinal field of a converging terahertz wave[J]. Optics Letters, 2018, 43(22): 5508-5511.
[25] Jiang Z P, Xu X G, Zhang X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982-2987.
[26] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632.
[27] Boivin A, Wolf E. Electromagnetic field in the neighborhood of the focus of a coherent beam[J]. Physical Review, 1965, 138(6B): B1561.
[28] Wang X K, Wang S, Xie Z W, et al. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization[J]. Optics Express, 2014, 22(20): 24622-24634.
[29] TakeyaK, IshizukiH, TairaT. Quantitative evaluation of birefringence of quartz crystal in terahertz region[C]∥Advanced Solid State Lasers 2020, October 13-16, 2020, Washington, D.C., United States. Washington, D.C.: Optica Publishing Group, 2020: JTh6A.20.
[30] Löffler T, Hahn T, Thomson M, et al. Large-area electro-optic ZnTe terahertz emitters[J]. Optics Express, 2005, 13(14): 5353-5362.
[31] Wu Q, Hewitt T D, Zhang X C. Two‐dimensional electro‐optic imaging of THz beams[J]. Applied Physics Letters, 1996, 69(8): 1026-1028.
[32] 吴晓君, 任泽君, 孔德胤, 等. 铌酸锂强场太赫兹光源及其应用[J]. 中国激光, 2022, 49(19): 1914001.
[33] Vicario C, Monoszlai B, Hauri C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 2014, 112(21): 213901.
[34] 王依海, 龙娟, 刘呈普, 等. 静电场调制飞秒激光气体微等离子体的太赫兹辐射增强[J]. 中国激光, 2022, 49(11): 1114001.
[35] 韩张华, 孙开礼, 蔡阳健. 微纳光学结构与太赫兹辐射产生技术的研究进展[J]. 光学学报, 2021, 41(8): 0823017.
Article Outline
刘耘妃, 王新柯, 孙文峰, 张岩. 基于会聚太赫兹光场纵向分量的物质琼斯矩阵测量技术[J]. 激光与光电子学进展, 2023, 60(18): 1811016. Yunfei Liu, Xinke Wang, Wenfeng Sun, Yan Zhang. Measurement Technique for Extracting Jones Matrix of Substances Based on Longitudinal Component of Converging Terahertz Beam[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811016.