人工晶体学报, 2023, 52 (3): 436, 网络出版: 2023-04-13  

铪铁双掺铌酸锂晶体的光折变参量研究

Study on the Photorefractive Parameters of Lithium Niobate Crystals Doped with Fe and Hf
作者单位
1 天津城建大学理学院, 天津 300384
2 中电科能源有限公司, 天津 300381
3 河北工业大学材料科学与工程学院, 电工装备可靠性与智能化国家重点实验室, 天津 300130
摘要
本文研究了铪铁双掺铌酸锂(LN∶Fe, Hf)晶体的衍射效率随光栅写入角度的变化曲线, 并对该关系曲线进行了拟合分析, 发现超阈值的铪铁双掺铌酸锂晶体的体光生伏打系数κ值相比于单掺铁铌酸锂晶体大幅增加。造成κ值变化的原因可能是由于铪离子的掺入消除了晶体中存在的本征缺陷, 而晶格环境的完美化使得留在锂位的铁离子的光生伏打系数大幅上升。此外, 实验结果还表明超阈值的铪铁双掺铌酸锂晶体中参与光折变的缺陷中心浓度约为14.5 ppm (1 ppm=10-6), 即约有4.8%的铁离子仍然“残存”在锂位中, 而这些铁离子可以引起足够强的光折变效应, 成为主导铌酸锂晶体光折变性能的缺陷中心。此外, 还从杂质缺陷-氢氧根基团角度讨论了铁离子晶格占位的可能性。
Abstract
In this paper, the diffraction efficiency as a function of grating writing angle in LN∶Fe, Hf crystals was studied, and the relationship curve was fitted and analyzed. It is found that the bulk photovoltaic coefficient κ increases significantly when the Hf-doping concentration exceeds the threshold. The dramatic increase of the coefficient κ to the fact that the Hf-doping eliminates the intrinsic defects in the crystal and the perfection of the lattice environment enhances the photovoltaic coefficient k of the Fe ions remaining at Li sites. The experimental results also show that the concentration of photorefractive centers is about 14.5 ppm (1 ppm=10-6) in LN∶Fe, Hf crystals, that is, 4.8% of the Fe ions still “remain” in the Li site even though the Hf-doping concentration already exceeds the threshold, and that these Fe ions can cause sufficiently strong photorefractive effect and become the dominant photorefractive centers in the LN crystal. In addition, the possibility of Fe ion occupation in LN lattice from the perspective of impurity-hydroxyl defect complex was discussed.
参考文献

[1] GUNTER P, HUIGNARD J P. Photorefractive materials and their applications: materials[M]. Heidelberg: Springer Verlag, 2006.

[2] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964.

[3] 孔勇发. 多功能光电材料:铌酸锂晶体[M]. 北京: 科学出版社, 2005.

[4] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路: 历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199.

[5] 张 雄, 高作轩, 高开放, 等. 铌酸锂基光伏微流体操控技术[J]. 人工晶体学报, 2021, 50(7): 1327-1339.

[6] GUO Y B, LIAO Y, CAO L C, et al. Improvement of photorefractive properties and holographic applications of lithium niobate crystal[J]. Optics Express, 2004, 12(22): 5556-5561.

[7] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452.

[8] ZHANG G Y, XU J J, LIU S M, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe, Mg crystals[J]. Proc SPIE, 1995, 14: 2529.

[9] VOLK T R, RAZUMOVSKI N V, MAMAEV A V, et al. Hologram recording in Zn-doped LiNbO3 crystals[J]. Josa B, 1996, 13(7): 1457-1460.

[10] 郑大怀, 张宇琦, 王烁琳, 等. 铌酸锂晶体的光折变效应[J]. 人工晶体学报, 2022, 51(S1): 1626-1642.

[11] ZHENG W, LIU B, BI J C, et al. Holographic associative memory by phase conjugate of four-wave-mixing in Sc∶Fe∶LiNbO3 crystal[J]. Optics Communications, 2005, 246(4/5/6): 297-301.

[12] LI S Q, LIU S G, KONG Y F, et al. Enhanced photorefractive properties of LiNbO3∶Fe crystals by HfO2 codoping[J]. Applied Physics Letters, 2006, 89(10): 101126.

[13] KONG Y F, WU S Q, LIU S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals[J]. Applied Physics Letters, 2008, 92(25): 251107.

[14] LIU B, LI C L, BI J C, et al. Photorefractive features of non-stoichiometry codoped Hf∶Fe∶LiNbO3 single crystals[J]. Crystal Research and Technology, 2008, 43(3): 260-265.

[15] LI S Q, LIU S G, KONG Y F, et al. The optical damage resistance and absorption spectra of LiNbO3∶Hf crystals[J]. Journal of Physics: Condensed Matter, 2006, 18(13): 3527-3534.

[16] YAN W B, CHEN H J, SHI L H, et al. Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3∶Fe crystals[J]. Applied Physics Letters, 2007, 90(21): 211108.

[17] MINZIONI P, CRISTIANI I, YU J, et al. Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals[J]. Optics Express, 2007, 15(21): 14171-14176.

[18] YAN W B, SHI L H, CHEN H J, et al. Investigations on the UV photorefractivity of LiNbO3∶Hf[J]. Optics Letters, 2010, 35(4): 601-603.

[19] YAN W B, SHI L H, CHEN H J, et al. Investigations of the OH- absorption bands in congruent and near-stoichiometric LiNbO3∶Hf crystals[J]. EPL, 2010, 91(3): 36002.

[20] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960.

[21] JERMANN F, OTTEN J. Light-induced charge transport in LiNbO3∶Fe at high light intensities[J]. Josa B, 1993, 10(11): 2085-2092.

[22] KAMBER N Y, XU J J, MIKHA S M, et al. Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals[J]. Optics Communications, 2000, 176(1/2/3): 91-96.

[23] KONG Y F, ZHANG W L, CHEN X J, et al. Absorption spectra of pure lithium niobate crystals[J]. Journal of Physics: Condensed Matter, 1999, 11(9): 2139-2143.

师丽红, 申绪男, 阎文博. 铪铁双掺铌酸锂晶体的光折变参量研究[J]. 人工晶体学报, 2023, 52(3): 436. SHI Lihong, SHEN Xunan, YAN Wenbo. Study on the Photorefractive Parameters of Lithium Niobate Crystals Doped with Fe and Hf[J]. Journal of Synthetic Crystals, 2023, 52(3): 436.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!