激光技术, 2023, 47 (2): 260, 网络出版: 2023-04-12  

不同年龄段人眼的视觉感知研究

Visual perception of human eyes at different ages
马佳飞 1,2,3王贯 1,2,3姚昞晖 1,2,3顾春 1,2,3许立新 1,2,3
作者单位
1 中国科学技术大学 核探测与核电子学国家重点实验室, 合肥 230026
2 中国科学技术大学 物理学院 安徽省光电子科学与技术重点实验室, 合肥 230026
3 先进激光技术安徽省实验室, 合肥 230026
摘要
为了探究不同年龄段人眼的视觉特性, 采用立体色域的方法建立了显示系统中不同年龄人群的视觉感知模型, 以基于CIEL*A*B*颜色空间的立体色域作为标准, 取得了不同年龄观察者的立体色域数据。结果表明, 从光度学来看, 观察者年龄的增长会导致其明视光谱发光效率函数的峰值响应有小幅度的降低, 并且其峰值位置在波长轴上向长波方向移动; 从色度学上来看, 色域体积从20岁的1.73×106到60岁的1.16×106, 减小了约1/3, 且这种减小集中在中高亮度水平上; 进一步分析波长与立体色域的关系, 发现绿色光源对所有年龄观察者的立体色域影响最大, 对于所有的观察者推荐520 nm的最佳波长选择。该研究可为显示系统针对不同年龄观察者的色域、波长和亮度之间提供设计指导。
Abstract
In order to explore the visual characteristics for different ages, the method of stereo color gamut was used to establish the visual perception model for different ages in the display system. Taking the stereo color gamut based on the CIEL*A*B* color space as the standard, stereo gamut data was obtained for different age observers. The results show that from the photometric point of view, the increase of age will lead to a small decrease in the peak response of the photopic spectral luminous efficiency function, and the peak position moves to the long wavelength on the wavelength axis; from the chromaticity point of view, the color gamut volume is reduced by about 1/3 from 1.73×106 in 20-years-old to 1.16×106 in 60-years-old, and this reduction is concentrated in the middle and high brightness planes. Further analysis of the relationship between wavelength and stereo color gamut, the green light source is found to have the greatest effect on the stereo color gamut for all age observers, and the optimal wavelength selection is recommended 520 nm for all observers. The research can provide design guidance between the color gamut, wavelength and brightness of display systems for different age observers.
参考文献

[1] SONG H Y, LI H F, LIU X, et al. Studies on different primaries for a nearly-ultimate gamut in a laser display[J]. Optics Express, 2018, 26(18): 23436-23448.

[2] CHELLAPPAN K V, ERDEN E, UREY H. Laser-based displays: A review[J]. Applied Optics, 2010, F49(25): 79-98.

[3] FAIRCHILD M D. Color appearance models[M]. 3rd ed. WILEY, New Jersey, USA: John Wiley & Sons, Inc, 2013:120-127.

[4] WRIGHT W D. A trichromatic colorimeter with spectral primaries[J]. Transactions of the Optical Society, 1928, 29(5): 225-242.

[5] GUILD J. The colorimetric properties of the spectrum[J]. Philosophical Transactions of the Royal Society of London, 1932, 230(685):149-187.

[6] STILES W S, BURCH J M. N.P.L. Colour-matching investigation: Final report (1958)[J]. Optica Acta: International Journal of Optics, 2010, 6(1): 1-26.

[7] KRAFT J M, WERNER J S. Aging and the saturation of colors. 1. Colorimetric purity discrimination[J]. Journal of the Optical Society of America, 1999, A16(2): 223-230.

[8] WERNER G, BRAUN W, HAVEL T F, et al. Protein structures in solution by nuclear magnetic resonance and distance geometry[J]. Journal of Molecular Biology, 1987, 196(3): 611-639.

[9] ZAGERS N P, NORREN D. Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors[J]. Journal of the Optical Society of America, 2004, A21(12): 2257-2268.

[10] STOCKMAN A, SHARPE L T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype[J]. Vision Research, 2000, 40(13): 1711-1737.

[11] STOCKMAN A. Cone fundamentals and CIE standards[J]. Current Opinion in Behavioral Sciences, 2019, 30: 87-93.

[12] POKORNY J, SMITH V C, LUTZE M. Aging of the human lens[J]. Applied Optics, 1987, 26(8): 1437-1440.

[13] SAID F S, WEALE R A. The variation with age of the spectral transmissivity of the living human crystalline lens[J]. Gerontologia, 1959, 3(4):213-231.

[14] JUDD D B. Report of US secretariat committee on colorimetry and artificial daylight[C]// Proceedings of the 12th Session of the CIE. Vienna, Austria: CIE, 1951, 1: 1-60.

[15] VOS J J. Colorimetric and photometric properties of a 2° fundamental observer[J]. Color Research and Applications, 1978, 3(3): 125-128.

[16] SHARPE L T, STOCKMAN A, JAGLA W, et al. A luminous efficiency function, VD65* (λ), for daylight adaptation: A correction[J]. Color Research and Applications, 2011, 36(1): 42-46.

[17] OUYANG M, HUANG S W. Determination of gamut boundary description for multi-primary color displays[J]. Optics Express, 2007, 15(20): 13388-13403.

[18] MAcADAM D L. The theory of the maximum visual efficiency of colored materials[J]. Journal of the Optical Society of America, 1935, A25(8): 249-252.

[19] MASAOKA K, JIANG F, FAIRCHILD M D, et al. 2D representation of display color gamut[J]. SID International Symposium Digest of Technology Papers, 2018, 78(3): 1048-1051.

[20] POINTER M R. The gamut of real surface colors[J]. Color Research and Applications, 1980, 5(3): 145-155.

[21] PERALES E, LINHARES J M, MASUDA O, et al. Effects of high-color-discrimination capability spectra on color-deficient vision[J]. Journal of the Optical Society of America, 2013, A30(9): 1780-1786.

马佳飞, 王贯, 姚昞晖, 顾春, 许立新. 不同年龄段人眼的视觉感知研究[J]. 激光技术, 2023, 47(2): 260. MA Jiafei, WANG Guan, YAO Binghui, GU Chun, XU Lixin. Visual perception of human eyes at different ages[J]. Laser Technology, 2023, 47(2): 260.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!