Photonics Research, 2023, 11 (7): 1139, Published Online: Jun. 9, 2023
Micropascal-sensitivity ultrasound sensors based on optical microcavities
Abstract
Whispering gallery mode (WGM) microcavities have been widely used for high-sensitivity ultrasound detection, owing to their optical and mechanical dual-resonance enhanced sensitivity. The ultrasound sensitivity of the cavity optomechanical system is fundamentally limited by thermal noise. In this work, we theoretically and experimentally investigate the thermal-noise-limited sensitivity of a WGM microdisk ultrasound sensor and optimize the sensitivity by varying the radius and a thickness of the microdisk, as well as using a trench structure around the disk. Utilizing a microdisk with a radius of 300 μm and thickness of 2 μm, we achieve a peak sensitivity of at 82.6 kHz. To the best of our knowledge, this represents the record sensitivity among cavity optomechanical ultrasound sensors. Such high sensitivity has the potential to improve the detection range of air-coupled ultrasound sensing technology.
Hao Yang, Xuening Cao, Zhi-Gang Hu, Yimeng Gao, Yuechen Lei, Min Wang, Zhanchun Zuo, Xiulai Xu, Bei-Bei Li. Micropascal-sensitivity ultrasound sensors based on optical microcavities[J]. Photonics Research, 2023, 11(7): 1139.