激光技术, 2023, 47 (2): 193, 网络出版: 2023-04-12  

飞秒激光致双液滴光学击穿和等离子体分布研究

Optical breakdown and plasma morphology distribution of double droplets induced by femtosecond laser
作者单位
南京理工大学 理学院, 南京 210094
摘要
为了研究超短激光脉冲与双液滴相互作用过程中的光学击穿和等离子体分布, 基于麦克斯韦方程组和电离速率方程, 构建了飞秒激光与双液滴的瞬态耦合模型, 使用有限元分析方法, 对飞秒激光辐照微米量级双液滴的自由电子密度和光场分布进行了计算, 得到了双液滴结构对液滴光学击穿和等离子体变化的影响。结果表明, 第2个液滴的击穿阈值约为同等条件下单液滴击穿阈值的35%; 等离子体的形态和击穿点的位置随双液滴间距发生变化, 且在聚焦区域产生纳米等离子体射流; 第2个液滴对激光能量的吸收随着双液滴间距的增加而减少; 当分别使用满足击穿阈值的光强入射, 双液滴吸收的能量约为单液滴的3%; 第2个液滴对激光能量的吸收随光强增大而增大, 能量吸收比例最终趋于0.01, 仅为单液滴的1.5%。该研究为激光诱导水击穿和激光在大气中的传输提供了一定的参考。
Abstract
In order to investigate the optical breakdown and plasma distribution during the interaction between ultrashort laser pulses and double droplets, based on the nonlinear Maxwell’s equations and the ionization rate equation, a transient coupled model of femtosecond laser and double droplets was constructed by finite element analysis. The free electron density and laser field distribution of micron-sized double droplets irradiated by femtosecond laser were calculated, and the effects of double-droplet structures on droplet optical breakdown and plasmonic changes were obtained. The results show that the breakdown threshold of the second droplet is approximately 35% of that of a single droplet under the same conditions. The plasma morphology and the location of the breakdown point vary with the distance between the double droplets, and a nanoplasma jet is generated in focused region. In addition, the absorption of laser energy by the second droplet decreases with increasing distance between the double droplets. The energy absorption of the double droplets is about 3% of that of the single droplet when incident with both laser intensity satisfying their breakdown threshold. The absorption of laser energy by the second droplet increases with the increase of laser intensity, and the energy absorption ratio eventually tends to 0.01, which is only 1.5% of that of a single droplet. The investigation provides a certain reference for laser-induced water breakdown and the transmission of laser in the atmosphere.
参考文献

[1] LI M, LIU W R. Multiple-scattering effects on the visibility measurement of laser transmissometers in fog[J]. Laser Technoloy, 2020, 44(4): 503-508 (in Chinese).

[2] RUDENK A, ROSENOW P, HASSON V, et al. Plasma-free water droplet shattering by long-wave infrared ultrashort pulses for efficient fog clearing[J]. Optica, 2020, 7(2): 115-122.

[3] CHEN Z Q, WANG X B, ZUO D L. Experimental research of CO2 laser-induced liquid droplet jet flow plasma[J]. Laser Technology, 2016, 40(6): 888-891 (in Chinese).

[4] KLEIN A L, BOUWHUIS W, VISSER C W, et al. Drop shaping by laser-pulse impact[J]. Physical Review Applied, 2015, 3(4): 044018.

[5] GELDERBLOM H, LHUISSIER H, KLEIN A L, et al. Drop defor-mation by laser-pulse impact[J]. Journal of Fluid Mechanics, 2016, 794: 676-699.

[6] HENIN S, PETIT Y, ROHWETTER P, et al. Field measurements suggest the mechanism of laser-assisted water condensation[J]. Nature Communications, 2011, 2(1): 1-7.

[7] JU J J, LIU J Sh, WANG Ch , et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Le-tters, 2012, 37(7): 1214-1216.

[8] GEINTS Y E, KABANOV A M, MATVIENKO G G, et al.Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation[J]. Optics Letters, 2010, 35(16): 2717-2719.

[9] CUI Z W, XIANG Y L, ZHANG Y X, et al. Quantitative study on uranium in uranyl solution by laser-induced breakdown spectroscopy[J]. Laser Technology, 2021, 45(3): 331-335 (in Chinese).

[10] LATZ C, ASSHAUER T, RATHJEN C, et al. Femtosecond-laser assisted surgery of the eye: Overview and impact of the low-energy concept[J]. Micromachines, 2021, 12(2): 122.

[11] INHESTER L, HANASAKI K, HAO Y J, et al. X-ray multiphoton ionization dynamics of a water molecule irradiated by an X-ray free-electron laser pulse[J]. Physical Review, 2016, A94(2): 023422.

[12] WOODBURY D, GOFFIN A, SCHWARTZ R M, et al. Self-guiding of long-wave infrared laser pulses mediated by avalanche ionization[J]. Physical Review Letters, 2020, 125(13): 133201.

[13] GEINTS Y E, ZEMLYANOV A A. Phase explosion of a water drop by a femtosecond laser pulse: I. Dynamics of optical breakdown[J]. Atmospheric and Oceanic Optics, 2009, 22(6): 581-589.

[14] EFIMENKO E S, MALKOV Y A, MURZANEV A A, et al. Femtosecond laser pulse-induced breakdown of a single water microdroplet[J]. Journal of the Optical Society of America, 2014, B31(3): 534-541.

[15] RUDENKO A, MOLONEY J V. Tunable near-to far-infrared optical breakdown in nonlinear interactions of ultrashort laser pulses with water microdroplets in ambient air[J]. Advanced Photonics Research, 2020, 1(2): 2000029.

[16] BOULAIS E, LACHAINE R, MEUNIER M, et al. Plasma mediated off-resonance plasmonicenhanced ultrafast laser-induced nanocavitation[J]. Nano Letters, 2012, 12(9): 4763-4769.

[17] NAZARI M, MIN X, ARONSON M, et al. Plasmon-enhanced pan-microbial pathogen inactivation in the cavitation regime: Selectivity without targeting[J]. ACS Applied Nano Materials, 2019, 2(4): 2548-2558.

[18] DELIBASIC H, PETROVIC V, PETROVIC I. Laser breakdown in water induced by λ=532 nm nanosecond pulses: Analytical calculation of the number density of free electrons[J]. Journal of the Phy-sical Society of Japan, 2020, 89(11): 114501.

[19] BULAT A F, DYRDA V I, LYSYTSYA M I, et al. Numerical simulation of the stress-strain state of thin-layer rubber-metal vibration absorber elements under nonlinear deformation[J]. Strength of Materials, 2018, 50(3): 387-395.

[20] ZHANG Ch, TANG M, ZHANG H C, et al. Optical breakdown during femtosecond laser propagation in water cloud[J]. Optics Express, 2019, 27(6): 8456-8475.

[21] ZHANG Ch, LU J, ZHANG H C, et al. Transient coupling model of plasma and laser field in water[J]. IEEE Journal of Quantum Electronics, 2016, 52(8): 1-9.

[22] JARNAC A, TAMOSAUSKAS G, MAJUS D, et al. Whole life cycle of femtosecond ultraviolet filaments in water[J]. Physical Review A, 2014, 89(3): 033809.

[23] NOACK J, VOGEL A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density[J]. IEEE Journal of Quantum Electronics, 1999, 35(8): 1156-1167.

[24] VOGEL A, LINZ N, FREIDANK S, et al. Femtosecond-laser-induced nanocavitation in water: Implications for optical breakdown threshold and cell surgery[J]. Physical Review Letters, 2008, 100(3): 038102.

钱天, 陆健, 唐懋, 张冲, 张宏超. 飞秒激光致双液滴光学击穿和等离子体分布研究[J]. 激光技术, 2023, 47(2): 193. QIAN Tian, LU Jian, TANG Mao, ZHANG Chong, ZHANG Hongchao. Optical breakdown and plasma morphology distribution of double droplets induced by femtosecond laser[J]. Laser Technology, 2023, 47(2): 193.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!