应用激光, 2023, 43 (2): 1, 网络出版: 2023-03-30  

U71Mn钢激光熔覆钴基熔覆层耐磨性研究

Study on Wear Resistance of Laser Cladding Cobalt Based Cladding Layer of U71Mn Steel
作者单位
新疆大学机械工程学院, 新疆 乌鲁木齐 830017
摘要
为提高U71Mn钢的耐磨性, 延长钢轨的使用寿命, 选择Stellite6粉、TiC粉和Y2O3粉为熔覆粉末, 采用激光熔覆同轴送粉技术在U71Mn钢基体表面制备钴基合金熔覆层。利用光学显微镜、扫描电子显微镜、X射线衍射仪、显微硬度仪器、超景深显微镜、磨损试验机, 分析熔覆层宏观形貌、显微组织、物相组成、显微硬度、磨损形貌和摩擦磨损性能。研究表明, 在质量分数为10%TiC-钴基粉末中添加粉末总质量2%的Y2O3粉末, 可获得较好的单道熔覆层; 在激光功率为1 200 W, 扫描速度为5 mm/s, 送粉速度为1.0 r/min, 搭接率为40%时, 可获得表面最为平整的熔覆层。熔覆层显微组织由等轴晶和柱状晶组成, 熔覆层与基体冶金结合良好, 熔覆层主要由TiC、Cr7C3、Cr23C6、γ-Co和Co3Ti组成。熔覆层硬度最高可达572 HV, 平均硬度约为基体的1.8倍; 熔覆层磨损量为基材磨损量的3.83%, 钴基熔覆层的耐磨损性能显著提升。
Abstract
In order to improve the wear resistance of U71Mn steel and prolong the service life of rail, Stellite6 powder, TiC powder and Y2O3 powder were selected as cladding powder, and cobalt alloy cladding layer was prepared on the surface of U71Mn steel by laser cladding coaxial powder feeding technology. optical microscope, scanning electron microscope, X-ray diffractometer, microhardness instrument, ultra depth of field microscope and wear testing machine were used to analyze the macroscopic morphology, microstructure, phase composition, microhardness, wear morphology and friction and wear properties of the coating, respectively. Results show that the best single channel cladding layer can be obtained by adding 2% Y2O3 powder to 10% TiC-Cobalt-based powder. When the laser power is 1 200 W, the scanning speed is 5 mm/s, the powder feeding speed is 1.0 r/min and the lap rate is 40%, the most flat cladding layer can be obtained. The microstructure of the cladding layer is composed of equiaxed and columnar crystals. The cladding layer has good metallurgical bonding with the matrix. The cladding layer is mainly composed of TiC, Cr7C3, Cr23C6, γ-Co and Co3Ti. The hardness of the cladding layer is up to 572 HV, and the average hardness is about 1.8 times that of the matrix. The wear of the cladding layer is 3.83% of the wear of the substrate, and the wear resistance of the cobalt-based cladding layer is significantly improved.
参考文献

[1] HU Y, GUO L C, MAIORINO M, et al. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions[J]. Wear, 2020, 460-461: 203455.

[2] ZHAO J Z, MIAO H C, KAN Q H, et al. Numerical investigation on the rolling contact wear and fatigue of laser dispersed quenched U71Mn rail[J]. International Journal of Fatigue, 2021, 143: 106010.

[3] PAN J Z, CHEN L, LIU C P, et al. Relationship between the microstructural evolution and wear behavior of U71Mn rail steel[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 1090-1098.

[4] 谢亚东, 祁文军, 高文会. U71Mn钢激光熔凝工艺及性能研究[J]. 热加工工艺, 2018, 47(12): 112-114.

[5] 刘吉华, 陈水友, 刘启跃. 4种成分车轮钢与U71Mn钢轨钢间的磨损行为[J]. 机械工程材料, 2017, 41(7): 70-75.

[6] THAWARI N, GULLIPALLI C, KATIYAR J K, et al. Effect of multi-layer laser cladding of Stellite6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties[J]. Materials Today Communications, 2021, 28: 102604.

[7] YIN X Y, LIANG J, GAO Y F, et al. Effects of LaB6 on the high-temperature oxidation behavior of TiC+TiBx reinforced titanium matrix composite coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2021, 421: 127445.

[8] LIU X B, BI J Z, MENG Z Y, et al. Tribological behaviors of high-hardness Co-based amorphous coatings fabricated by laser cladding[J]. Tribology International, 2021, 162: 107142.

[9] XIAO Q, SUN W L, YANG K X, et al. Wear mechanisms and micro-evaluation on WC particles investigation of WC-Fe composite coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2021, 420: 127341.

[10] WANG C, LI J J, WANG T, et al. Microstructure and properties of pure titanium coating on Ti-6Al-4V alloy by laser cladding[J]. Surface and Coatings Technology, 2021, 416: 127137.

[11] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.

[12] LI W, XU P Q, WANG Y Y, et al. Laser synthesis and microstructure of micro-and nano-structured WC reinforced Co-based cladding layers on titanium alloy[J]. Journal of Alloys and Compounds, 2018, 749: 10-22.

[13] CHEN L Y, ZHAO Y, CHEN X, et al. Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating: Process, microstructure and properties[J]. Ceramics International, 2021, 47(21): 30113-30128.

[14] 姚芳萍, 房立金, 李金华, 等. Y2O3对激光熔覆Stellite156钴基合金涂层的作用机制[J]. 稀有金属与硬质合金, 2021, 49(4): 29-34.

[15] WANG L X, YANG L J, HUANG Y M, et al. Effects of Y2O3 addition on the microstructure and wear-resistant performance of TiN/TiB-reinforced Ti-based laser-clad coatings on Ti-6Al-4V alloys[J]. Materials Today Communications, 2021, 29: 102752.

[16] 张天刚, 庄怀风, 姚波, 等. Y2O3对钛基激光熔覆层组织及性能的影响[J]. 复合材料学报, 2020, 37(6): 1390-1400.

[17] 王成磊, 张光耀, 高原, 等. Y2O3在6063铝合金表面激光熔覆Ni基熔覆层中的作用机制[J]. 稀有金属, 2016, 40(3): 201-206.

[18] 马永, 朱红梅, 孙楚光, 等. TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能[J]. 表面技术, 2017, 46(6): 238-243.

[19] 安相龙, 王玉玲, 姜芙林, 等. 搭接率对42CrMo激光熔覆层温度场和残余应力分布的影响[J]. 中国激光, 2021, 48(10): 1002110.

[20] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.

[21] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.

[22] 李根. TiC增强钴基合金激光熔覆层组织及性能的研究[D]. 济南: 山东大学, 2016.

[23] 谢亚东. 基于激光熔覆的高铁钢轨强化研究[D]. 乌鲁木齐: 新疆大学, 2017.

[24] CAO S L, LIANG J, WANG L Q, et al. Effects of NiCr intermediate layer on microstructure and tribological property of laser cladding Cr3C2 reinforced Ni60A-Ag composite coating on copper alloy[J]. Optics & Laser Technology, 2021, 142: 106963.

[25] LIU Y F, ZHUANG S G, LIU X B, et al. Microstructure evolution and high-temperature tribological behavior of Ti3SiC2 reinforced Ni60 composite coatings on 304 stainless steel by laser cladding[J]. Surface and Coatings Technology, 2021, 420: 127335.

[26] SHI X Y, WEN D S, WANG S R, et al. Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc[J]. Optik, 2021, 242: 167227.

[27] SHU F Y, WANG B, ZHANG S X, et al. Microstructure, high-temperature wear resistance, and corrosion resistance of laser cladded Co-based coating[J].Journal of Materials Engineering and Performance, 2021, 30(5): 3370-3380.

韩超俊, 祁文军, 王旭祥, 张爽, 张荣. U71Mn钢激光熔覆钴基熔覆层耐磨性研究[J]. 应用激光, 2023, 43(2): 1. Han Chaojun, Qi Wenjun, Wang Xuxiang, Zhang Shuang, Zhang Rong. Study on Wear Resistance of Laser Cladding Cobalt Based Cladding Layer of U71Mn Steel[J]. APPLIED LASER, 2023, 43(2): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!