Chinese Optics Letters, 2023, 21 (11): 110006, Published Online: Nov. 13, 2023  

Inverse design on terahertz multilevel diffractive lens based on 3D printing [Invited]

Author Affiliations
1 School of Electronic Information Engineering, Beihang University, Beijing 100191, China
2 Institute of Modern Optics, Nankai University, Tianjin 300350, China
Copy Citation Text

Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang. Inverse design on terahertz multilevel diffractive lens based on 3D printing [Invited][J]. Chinese Optics Letters, 2023, 21(11): 110006.

References

[1] I. F. Akyildiz, J. M. Jornet, C. Han. Terahertz band: next frontier for wireless communications. Phys. Commun., 2014, 12: 16.

[2] K. Nallappan, H. Guerboukha, C. Nerguizian, M. Skorobogatiy. Live streaming of uncompressed HD and 4K videos using terahertz wireless links. IEEE Access, 2018, 6: 58030.

[3] M. Kato, S. R. Tripathi, K. Murate, K. Imayama, K. Kawase. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection. Opt. Express, 2016, 24: 6425.

[4] A. Rahman, A. K. Rahman, B. Rao. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron., 2016, 82: 64.

[5] H. W. Tian, H. Y. Shen, X. G. Zhang, X. Li, W. X. Jiang, T. J. Cui. Terahertz metasurfaces: toward multifunctional and programmable wave manipulation. Front. Phys., 2020, 8: 584077.

[6] N. M. Burford, M. O. El-Shenawee. Review of terahertz photoconductive antenna technology. Opt. Eng., 2017, 56: 010901.

[7] S. J. Kim, B. J. Kang, U. Puc, W. T. Kim, M. Jazbinsek, F. Rotermund, O. P. Kwon. Highly nonlinear optical organic crystals for efficient terahertz wave generation, detection, and applications. Adv. Opt. Mater., 2021, 9: 2101019.

[8] X. Wang, J. Ye, W. Sun, P. Han, L. Hou, Y. Zhang. Terahertz near-field microscopy based on an air-plasma dynamic aperture. Light Sci. Appl., 2022, 11: 129.

[9] W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 2021, 10: 11.

[10] T. S. Seifert, U. Martens, F. Radu, M. Ribow, M. Berritta, L. Nádvorník, R. Starke, T. Jungwirth, M. Wolf, I. Radu. Frequency-independent terahertz anomalous hall effect in DyCo5, Co32Fe68, and Gd27Fe73 thin films from DC to 40 THz. Adv. Mater., 2021, 33: 2007398.

[11] S. Chen, H. Wang, J. Liu, M. Zhang, P. Chen, P. Li, Z. Liu, X. Han, C. Wan, H. Yu. Simultaneous terahertz pulse generation and manipulation with spintronic coding surface. Adv. Opt. Mater., 2023: 2300899.

[12] F. Gaufillet, S. Marcellin, E. Akmansoy. Dielectric metamaterial-based gradient index lens in the terahertz frequency range. IEEE J. Sel. Top. Quantum Electron., 2016, 23: 4700605.

[13] J. He, X. He, T. Dong, S. Wang, M. Fu, Y. Zhang. Recent progress and applications of terahertz metamaterials. J. Phys. D, 2021, 55: 123002.

[14] M. Marishwari, V. Subramanian, Z. Ouyang, N. Yogesh. Terahertz sub-wavelength focusing and negative refraction assisted beam transferring based on 3-D metamaterial flat lens configurations. Prog. Electromagn. Res. B, 2023, 99: 121.

[15] X. Jiang, J. Ye, J. He, X. Wang, D. Hu, S. Feng, Q. Kan, Y. Zhang. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Express, 2013, 21: 30030.

[16] Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, W. Zhang. Efficient flat metasurface lens for terahertz imaging. Opt. Express, 2014, 22: 25931.

[17] X. Zang, B. Yao, L. Chen, J. Xie, X. Guo, A. V. Balakin, A. P. Shkurinov, S. Zhuang. Metasurfaces for manipulating terahertz waves. Light Adv. Manuf., 2021, 2: 148.

[18] B. Chen, S. Yang, J. Chen, J. Wu, K. Chen, W. Li, Y. Tan, Z. Wang, H. Qiu, K. Fan. Directional terahertz holography with thermally active Janus metasurface. Light Sci. Appl., 2023, 12: 136.

[19] M. Hashemi, A. Moazami, M. Naserpour, C. J. Zapata-Rodríguez. A broadband multifocal metalens in the terahertz frequency range. Opt. Commun., 2016, 370: 306.

[20] Z. Huang, B. Hu, W. Liu, J. Liu, Y. Wang. Dynamical tuning of terahertz meta-lens assisted by graphene. J. Opt. Soc. Am. B, 2017, 34: 1848.

[21] Y. Gao, J. Gu, R. Jia, Z. Tian, C. Ouyang, J. Han, W. Zhang. Polarization independent achromatic meta-lens designed for the terahertz domain. Front. Phys., 2020, 8: 606693.

[22] S. Zhang, C. Li, L. Ke, B. Fang, J. Lu, X. Ma, X. Jing. All-dielectric terahertz wave metagrating lens based on 3D printing low refractive index material. Infrared Phys. Technol., 2023, 133: 104775.

[23] S. Liu, T. J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Q. Gu, W. X. Tang, M. Q. Qi, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci., 2016, 3: 1600156.

[24] S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, A. Faraon. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 2016, 7: 11618.

[25] M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, R. Menon. Broadband lightweight flat lenses for long-wave infrared imaging. Proc. Natl. Acad. Sci. USA, 2019, 116: 21375.

[26] M. Ossiander, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso, M. Schultze. Extreme ultraviolet metalens by vacuum guiding. Science, 2023, 380: 59.

[27] W. T. Chen, J. Park, J. Marchioni, S. Millay, K. M. Yousef, F. Capasso. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat. Commun., 2023, 14: 2544.

[28] Y. Xu, J. Gu, Y. Gao, Q. Yang, W. Liu, Z. Yao, Q. Xu, J. Han, W. Zhang. Broadband achromatic terahertz metalens constituted by Si–SiO2–Si hybrid meta-atoms. Adv. Funct. Mater., 2023, 33: 2302821.

[29] L. L. Doskolovich, R. V. Skidanov, E. A. Bezus, S. V. Ganchevskaya, D. A. Bykov, N. L. Kazanskiy. Design of diffractive lenses operating at several wavelengths. Opt. Express, 2020, 28: 11705.

[30] X. Xiao, Y. Zhao, X. Ye, C. Chen, X. Lu, Y. Rong, J. Deng, G. Li, S. Zhu, T. Li. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci. Appl., 2022, 11: 323.

[31] S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, M. Koch. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. J. Infrared Millim. Terahertz Waves, 2014, 35: 993.

[32] A. Squires, E. Constable, R. Lewis. 3D printed terahertz diffraction gratings and lenses. J. Infrared Millim. Terahertz Waves, 2015, 36: 72.

[33] Z. Zhang, X. Wei, C. Liu, K. Wang, J. Liu, Z. Yang. Rapid fabrication of terahertz lens via three-dimensional printing technology. Chin. Opt. Lett., 2015, 13: 022201.

[34] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun., 2010, 181: 687.

[35] F. Shen, A. Wang. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt., 2006, 45: 1102.

[36] ErsoyO. K., Diffraction, Fourier Optics and Imaging (John Wiley, 2007).

[37] J. Lv, S. Shen, L. Chen, Y. Zhu, S. Zhuang. Frequency selective fingerprint sensor: the terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement. PhotoniX, 2023, 4: 28.

Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang. Inverse design on terahertz multilevel diffractive lens based on 3D printing [Invited][J]. Chinese Optics Letters, 2023, 21(11): 110006.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!