光学学报, 2023, 43 (17): 1714009, 网络出版: 2023-09-22  

高功率高光束质量级联泵浦掺镱光纤激光器研究进展 下载: 1714次特邀综述

Research Progress in Tandem-Pumped High-Power and High-Beam Quality Ytterbium-Doped Fiber Laser
肖虎 1,2李瑞显 1,2吴函烁 1,2黄良金 1,2陈子伦 1,2杨欢 1,2闫志平 1,2王蒙 1,2潘志勇 1,2王泽锋 1,2,*周朴 1,**陈金宝 1,2,***
作者单位
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
引用该论文

肖虎, 李瑞显, 吴函烁, 黄良金, 陈子伦, 杨欢, 闫志平, 王蒙, 潘志勇, 王泽锋, 周朴, 陈金宝. 高功率高光束质量级联泵浦掺镱光纤激光器研究进展[J]. 光学学报, 2023, 43(17): 1714009.

Hu Xiao, Ruixian Li, Hanshuo Wu, Liangjin Huang, Zilun Chen, Huan Yang, Zhiping Yan, Meng Wang, Zhiyong Pan, Zefeng Wang, Pu Zhou, Jinbao Chen. Research Progress in Tandem-Pumped High-Power and High-Beam Quality Ytterbium-Doped Fiber Laser[J]. Acta Optica Sinica, 2023, 43(17): 1714009.

参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

[2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

[3] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[4] 李峰云, 黎玥, 宋华青, 等. 全国产光纤材料器件实现高SRS抑制比20.88 kW输出[J]. 中国激光, 2021, 48(21): 2116002.

    Li F Y, Li Y, Song H Q, et al. The national optical fiber material devices achieve high SRS rejection ratio of 20.88 kW output[J]. Chinese Journal of Lasers, 2021, 48(21): 2116002.

[5] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48(9): 0916003.

    Lin A X, Xiao Q R, Ni L, et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48(9): 0916003.

[6] 肖虎, 潘志勇, 陈子伦, 等. 基于自研光纤和器件实现20 kW高光束质量激光稳定输出[J]. 中国激光, 2022, 49(16): 1616002.

    Xiao H, Pan Z Y, Chen Z L, et al. Stable output of 20 kW high beam quality laser based on self-developed optical fiber and device[J]. Chinese Journal of Lasers, 2022, 49(16): 1616002.

[7] 施建宏, 杜天怡, 马盖明, 等. 全国产化工业光纤激光器实现单纤22.07 kW功率稳定输出[J]. 中国激光, 2022, 49(24): 2416003.

    Shi J H, Du T Y, Ma G M, et al. All-domestic industrial fiber laser realizes stable output of 22.07 kW single fiber power[J]. Chinese Journal of Lasers, 2022, 49(24): 2416003.

[8] ShcherbakovE A, FominV V, AbramovA A, et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris. Washington, D.C.: Optica Publishing Group, 2013: ATh4A.2.

[9] MinellyJ, LamingR, TownsendJ, et al. High-gain fibre power amplifier tandem-pumped by a 3 W multi-stripe diode[C]//Optical Fiber Communications Conference 1992, February 2, 1992, San Jose, California, USA. Washington, D.C.: Optica Publishing Group, 1992: TuG2.

[10] Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.

[11] StilesM. New developments in IPG fiber laser technology[C]//Proceeding of the 5th International Workshop on Fiber Lasers, 2009.

[12] Xiao H, Leng J Y, Zhang H W, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 2015, 54(27): 8166-8169.

[13] Popp A, Voss A, Graf T, et al. Thin-disk laser-pumping of ytterbium-doped fiber laser[J]. Laser Physics Letters, 2011, 8(12): 887-894.

[14] Wirth C, Schmidt O, Kliner A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 2011, 36(16): 3061-3063.

[15] Ma P F, Xiao H, Meng D R, et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 2018, 6(4): e57.

[16] Gu G C, Liu Z Y, Kong F T, et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm[J]. Optics Express, 2015, 23(14): 17693-17700.

[17] Kong F T, Gu G C, Hawkins T W, et al. Efficient 240 W single-mode 1018 nm laser from an Ytterbium-doped 50/400 µm all-solid photonic bandgap fiber[J]. Optics Express, 2018, 26(3): 3138-3144.

[18] SeahC P, LimW Y W, ChuaS L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C]//Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts. Washington, D.C.: Optica Publishing Group, 2018: AM2A.2.

[19] Lim K J, Seah S K W, Ye J Y E, et al. High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers[J]. Photonics Research, 2020, 8(10): 1599-1064.

[20] 肖虎, 冷进勇, 周朴, 等. 高功率级联抽运掺镱光纤激光器研究进展[J]. 中国激光, 2017, 44(2): 0201007.

    Xiao H, Leng J Y, Zhou P, et al. High power tandem-pumped Yb-doped fiber laser[J]. Chinese Journal of Lasers, 2017, 44(2): 0201007.

[21] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48(20): 2000001.

    Zhou P, Leng J Y, Xiao H, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48(20): 2000001.

[22] 肖起榕, 田佳丁, 李丹, 等. 级联泵浦高功率掺镱光纤激光器:进展与展望[J]. 中国激光, 2021, 48(15): 1501004.

    Xiao Q R, Tian J D, Li D, et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 2021, 48(15): 1501004.

[23] 高聪, 代江云, 李峰云, 等. 自研万瓦级同带泵浦掺镱石英玻璃光纤[J]. 中国激光, 2020, 47(3): 0315001.

    Gao C, Dai J Y, Li F Y, et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 2020, 47(3): 0315001.

[24] 代江云, 刘念, 李峰云, 等. (1+1)型泵浦增益一体化光纤实现同带泵浦万瓦激光输出[J]. 中国激光, 2021, 48(18): 1816001.

    Dai J Y, Liu N, Li F Y, et al. The (1+1) type pump gain integrated fiber realizes the output of 10,000-watt laser pumped by the same band[J]. Chinese Journal of Lasers, 2021, 48(18): 1816001.

[25] 高聪, 刘念, 李峰云, 等. (1+1)型长距离侧面泵浦光纤实现17.4 kW激光输出[J]. 强激光与粒子束, 2022, 34(5): 051002.

    Gao C, Liu N, Li F Y, et al. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002.

[26] 张磊, 楼风光, 王孟, 等. 同带泵浦的万瓦级三包层掺镱光纤[J]. 中国激光, 2021, 48(13): 1315001.

    Zhang L, Lou F G, Wang M, et al. Yb-doped triple-clad fiber for nearly 10 kW level tandem-pumped output[J]. Chinese Journal of Lasers, 2021, 48(13): 1315001.

[27] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 2007, 4(2): 93-102.

[28] Kalyoncu S K, Yeniay A. High brightness 1018 nm monolithic fiber laser with power scaling to >500  W[J]. Applied Optics, 2020, 59(16): 4763-4767.

[29] Xiao H, Zhou P, Wang X L, et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 2013, 10(6): 065102.

[30] Midilli Y, Efunbajo O B, Şimşek B, et al. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W[J]. Applied Optics, 2017, 56(25): 7225-7229.

[31] Yan P, Wang X J, Wang Z H, et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0902506.

[32] Tian J D, Xiao Q R, Li D, et al. Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 2020, 37(8): 2514-2522.

[33] Platonov N, Shkurikhin O, Fomin V, et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceeding of SPIE, 2020, 11260: 1126003.

[34] 谷炎然, 冷进勇, 肖虎, 等. 5 kW全光纤结构1018 nm激光合成[J]. 强激光与粒子束, 2017, 29(12): 120101.

    Gu Y R, Leng J Y, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining[J]. High Power Laser and Particle Beams, 2017, 29(12): 120101.

[35] 肖虎. 掺镱光纤激光级联泵浦技术研究[D]. 长沙: 国防科技大学, 2012.

    XiaoH. Study on Yb-doped fiber laser cascade pumping technology[D]. Changsha: National University of Defense Technology, 2012.

[36] Chen X, Yao T F, Huang L J, et al. Functional fibers and functional fiber-based components for high-power lasers[J]. Advanced Fiber Materials, 2023, 5(1): 59-106.

[37] Xiao H, Leng J Y, Zhang H W, et al. High-power 1018  nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 2015, 54(27): 8166-8169.

[38] Tao R M, Xiao H, Zhang H W, et al. Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities[J]. Optics Express, 2018, 26(19): 25098-25110.

[39] Wang Z H, Yu W L, Tian J D, et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 2021, 57(2): 6800109.

[40] Mete B, Yeniay A, Ecevit N, et al. High brightness in-band pumped fiber MOPA with output power scaling to >4.6 kW[J]. Applied Optics, 2022, 61(34): 10121-10125.

[41] Li M J, Chen X, Liu A P, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 2009, 27(15): 3010-3016.

[42] Kong L C, Leng J Y, Zhou P, et al. Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber[J]. Optics Express, 2017, 25(19): 23437-23450.

[43] Yang B L, Wang P, Zhang H W, et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 2021, 29(17): 26366-26374.

[44] Huang Z M, Shu Q, Tao R M, et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184.

[45] Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1864-1867.

[46] Wang Y. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers[J]. Optical Engineering, 2005, 44(11): 114202.

[47] Shi C, Su R T, Zhang H W, et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 2017, 9(3): 1502910.

[48] 976 nm-530 W(VBG)[EB/OL]. [2023-03-03]. https://www.bwt-bj.com/product/details64_5922.html.

[49] EVERBRIGHT. Products center[EB/OL]. [2023-03-03]. http://www.everbrightphotonics.com/companyfile/3/.

[50] Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B, 2016, 33(7): 1392-1398.

[51] Li R X, Wu H S, Xiao H, et al. More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality[J]. Optics & Laser Technology, 2022, 153: 108204.

[52] Li R X, Wu H S, Xiao H, et al. More than 6 kW near single-mode fiber amplifier based on a bidirectional tandem pumping scheme[J]. Applied Optics, 2022, 61(23): 6804-6810.

[53] 李瑞显, 吴函烁, 肖虎, 等. 后向同带泵浦光纤激光实现大于8千瓦高光束质量输出[J]. 光学学报, 2022, 42(14): 1436001.

    Li R X, Wu H S, Xiao H, et al. Backward band pumped fiber laser realizes high beam quality output greater than 8 kW[J]. Acta Optica Sinica, 2022, 42(14): 1436001.

[54] 肖虎, 李瑞显, 陈子伦, 等. 后向级联泵浦的10 kW高光束质量光纤激光器[J]. 光学学报, 2022, 42(23): 2336001.

    Xiao H, Li R X, Chen Z L, et al. Backward cascade pumped 10 kW high beam quality fiber laser[J]. Acta Optica Sinica, 2022, 42(23): 2336001.

[55] 吴涵烁. 基于部分掺杂光纤的大功率光纤激光器关键技术研究[D]. 长沙: 国防科技大学, 2022.

    WuH S. Research on the key techniques of high power confined-doped fiber laser[D]. Changsha: National University of Defense Technology, 2022.

[56] Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 2016, 9728: 972805.

[57] Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 2017, 10083: 100830Y.

[58] Liao L, Zhang F F, He X L, et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics, 2018, 57(12): 3244-3249.

[59] Zhang F F, Wang Y B, Lin X F, et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 2019, 27(15): 20824-20836.

[60] Wang B, Pang L, Liu J. Single mode 2.4 kW part-doped ytterbium fiber fabricated by modified chemical vapor deposition technique[J]. Proceedings of SPIE, 2020, 11427: 114271X.

[61] Huang Z M, Shu Q A, Luo Y, et al. 3.5 kW narrow-linewidth monolithic fiber amplifier at 1064 nm by employing a confined doping fiber[J]. Journal of the Optical Society of America B, 2021, 38(10): 2945-2952.

[62] Wu H S, Li R X, Xiao H, et al. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber[J]. Optics Express, 2021, 29(20): 31337-31347.

[63] 吴函烁, 安毅, 肖虎, 等. 国产部分掺杂光纤实现7 kW高光束质量激光输出[J]. 中国激光, 2021, 48(24): 2416002.

    Wu H S, An Y, Xiao H, et al. Realization of 7 kW laser output with high beam quality by domestic partially doped fiber[J]. Chinese Journal of Lasers, 2021, 48(24): 2416002.

[64] 吴函烁, 李瑞显, 肖虎, 等. 双向级联泵浦部分掺杂光纤实现近8 kW高光束质量激光输出[J]. 中国激光, 2022, 49(7): 0716002.

    Wu H S, Li R X, Xiao H, et al. Two-way cascade pumping partially doped fiber to achieve high beam quality laser output of nearly 8 kW[J]. Chinese Journal of Lasers, 2022, 49(7): 0716002.

[65] 黄良金, 吴函烁, 李瑞显, 等. 用于10 kW级高光束质量激光输出的国产部分掺杂光纤[J]. 强激光与粒子束, 2022, 34(11): 111002.

    Huang L J, Wu H S, Li R X, et al. Domestic partially doped fiber for 10 kW high beam quality laser output[J]. High Power Laser and Particle Beams, 2022, 34(11): 111002.

[66] 王小林, 文榆钧, 张汉伟, 等. 变纤芯直径掺镱光纤激光器:现状与趋势[J]. 中国激光, 2022, 49(21): 2100001.

    Wang X L, Wen Y J, Zhang H W, et al. Ytterbium-doped core-diameter-variable fiber laser: current situation and develop tendency[J]. Chinese Journal of Lasers, 2022, 49(21): 2100001.

[67] 史尘. 高功率长锥形掺镱光纤放大器研究[D]. 长沙: 国防科技大学, 2017.

    ShiC. Study on high power long tapered Yb-doped fiber amplifier[D]. Changsha: National University of Defense Technology, 2017.

[68] 叶云. 基于变纤芯直径掺镱光纤的高功率光纤激光技术研究[D]. 长沙: 国防科技大学, 2022.

    YeY. Research on high power fiber laser based on ytterbium-doped fiber with variable core diameter[D]. Changsha: National University of Defense Technology, 2022.

[69] Filippov V, Chamorovskii Y, Kerttula J, et al. Single-mode 212 W tapered fiber laser pumped by a low-brightness source[J]. Optics Letters, 2008, 33(13): 1416-1418.

[70] Filippov V, Chamorovskii Y, Kerttula J, et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 2009, 17(3): 1203-1214.

[71] Filippov V, Kerttula J, Chamorovskii Y, et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 2010, 18(12): 12499-12512.

[72] Roy V, Paré C, Labranche B, et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement[J]. Proceedings of SPIE, 2017, 10083: 1008314.

[73] Shi C, Zhang H W, Wang X L, et al. kW-class high power fiber laser enabled by active long tapered fiber[J]. High Power Laser Science and Engineering, 2018, 6(2): e16.

[74] Huang L, Zhou Z C, Shi C, et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser[J]. Science China Technological Sciences, 2018, 61(7): 971-981.

[75] Fedotov A, Noronen T, Gumenyuk R, et al. Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers[J]. Optics Express, 2018, 26(6): 6581-6592.

[76] Yang B L, Zhang H W, Shi C, et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 2019, 27(5): 7585-7592.

[77] Ye Y, Xi X M, Shi C, et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber[J]. Laser Physics Letters, 2019, 16(8): 085109.

[78] Lai W C, Ma P F, Liu W, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 2020, 28(14): 20908-20919.

[79] Li Y W, Gao C, Liu N A, et al. Fabrication and properties of domestic long tapered ytterbium-doped fiber with high tapering ratio[J]. Proceedings of SPIE, 2022, 12169: 1216999.

[80] Li W, Ma P F, Chen Y S, et al. 694 W sub-GHz polarization-maintained tapered fiber amplifier based on spectral and pump wavelength optimization[J]. Optics Express, 2022, 30(15): 26875-26885.

[81] Ye Y, Lin X F, Yang B L, et al. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier[J]. Optics Letters, 2022, 47(9): 2162-2165.

[82] 叶云, 奚小明, 杨保来, 等. 后向泵浦长锥形掺镱光纤实现6 kW激光输出[J]. 红外与激光工程, 2022, 51(10): 20220596.

    Ye Y, Xi X M, Yang B L, et al. Backward pumping long tapered Yb-doped fiber to realize 6 kW laser output[J]. Infrared and Laser Engineering, 2022, 51(10): 20220596.

[83] Ustimchik V, Chamorovskii Y, Filippov V. High average power (500 W/50 ps) and high peak power (3.2 MW/50 ps) picosecond pulsed MOPA system with tapered double-clad ytterbium fiber[J]. Proceedings of SPIE, 2022, 11981: 119810T.

[84] 奚小明, 杨保来, 张汉伟, 等. LD直接泵浦全光纤激光器输出功率突破20 kW[J]. 强激光与粒子束, 2023, 35(2): 021001.

    Xi X M, Yang B L, Zhang H W, et al. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35(2): 021001.

[85] Dong L A, Ballato J, Kolis J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability[J]. Optics Express, 2023, 31(4): 6690-6703.

[86] 陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科技大学, 2015.

    TaoR M. Study on thermal mode instability of high power narrow linewidth near diffraction limit fiber laser amplifier[D]. Changsha: National University of Defense Technology, 2015.

[87] 王小林, 王鹏, 吴函烁, 等. LD泵浦高亮度光纤激光器:设计、仿真与实现[J]. 红外与激光工程, 2023, 52(6): 20230242.

    Wang X L, Wang P, Wu H S, et al. Design, simulation and implementation of direct LD pumped high-brightness fiber laser[J]. Infrared and Laser Engineering, 2023, 52(6): 20230242.

[88] 杨保来, 杨欢, 王鹏, 等. 基于自研光纤的LD泵浦光纤激光器实现10 kW输出[J]. 中国激光, 2022, 49(20): 2016001.

    Yang B L, Yang H, Wang P, et al. LD pumped fiber laser based on self-developed fiber realizes 10 kW output[J]. Chinese Journal of Lasers, 2022, 49(20): 2016001.

[89] Wu H S, Li H B, An Y, et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 2022, 10(6): e44.

[90] Li R X, Li H B, Wu H S, et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 2023, 31(15): 24423-24436.

[91] Jain D, Baskiotis C, Sahu J K. Mode area scaling with multi-trench rod-type fibers[J]. Optics Express, 2013, 21(2): 1448-1455.

[92] Jain D, Jung Y, Kim J, et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 2023, 31: 24423-24436.

[93] 黄良金. 大功率光纤激光器的模式分解及模式控制[D]. 长沙: 国防科技大学, 2016.

    HuangL J. Mode decomposition and mode control of high power fiber laser[D]. Changsha: National University of Defense Technology, 2016.

[94] McComb T S, McCal D, Farrow R, et al. High-peak power, flexible-pulse parameter, chirally coupled core (3C) fiber-based picosecond MOPA systems[J]. Proceedings of SPIE, 2014, 8961: 896112.

[95] Kanskar M, Zhang J, Koponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 2018, 10512: 105120F.

[96] Khitrov V, Minelly J D, Tumminelli R, et al. 3 kW single-mode direct diode-pumped fiber laser[J]. Proceedings of SPIE, 2014, 8901: 89016V.

[97] Xu W B, Lin Z Q, Wang M, et al. 50 μm core diameter Yb3+/Al3+/F– codoped silica fiber with M2<1.1 beam quality[J]. Optics Letters, 2016, 41(3): 504-507.

[98] Beier F, Hupel C, Kuhn S, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899.

[99] Zeng L F, Xi X M, Ye Y, et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 2020, 45(20): 5792-5795.

[100] Zeng L F, Pan Z Y, Xi X M, et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 2021, 46(6): 1393-1396.

[101] Zhang Z L, Lin X F, Zhang X, et al. Low-numerical aperture confined-doped long-tapered Yb-doped silica fiber for a single-mode high-power fiber amplifier[J]. Optics Express, 2022, 30(18): 32333-32346.

[102] Ye Y, Lin X F, Xi X M, et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 2021, 9(2): e21.

[103] Ye Y, Lin X F, Xi X M, et al. Demonstration of constant-cladding tapered-core Yb-doped fiber for mitigating thermally-induced mode instability in high-power monolithic fiber amplifiers[J]. Optics Express, 2022, 30(14): 24936-24947.

[104] Nicholson J W, Pincha J, Kansal I, et al. 5 kW single-mode output power from Yb-doped fibers with increased higher-order mode loss[J]. Proceedings of SPIE, 2023, 12400: 1240002.

[105] Kouznetsov D, Moloney J V. Efficiency of pump absorption in double-clad fiber amplifiers Ⅱ:broken circular symmetry[J]. Journal of the Optical Society of America B, 2002, 19(6): 1259-1263.

[106] Philippe L, Doya V, Philippe R, et al. Experimental study of pump power absorption along rare-earth-doped double clad optical fibres[J]. Optics Communications, 2003, 218(4/5/6): 249-254.

[107] Koška P, Peterka P, Aubrecht J, et al. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers[J]. Optics Express, 2016, 24(1): 102-107.

[108] Liu R, Yan D P, Chen M, et al. Enhanced cladding pump absorption of ytterbium-doped double cladding fiber with internally modified cladding structures[J]. Optical Materials Express, 2019, 10(1): 36-45.

肖虎, 李瑞显, 吴函烁, 黄良金, 陈子伦, 杨欢, 闫志平, 王蒙, 潘志勇, 王泽锋, 周朴, 陈金宝. 高功率高光束质量级联泵浦掺镱光纤激光器研究进展[J]. 光学学报, 2023, 43(17): 1714009. Hu Xiao, Ruixian Li, Hanshuo Wu, Liangjin Huang, Zilun Chen, Huan Yang, Zhiping Yan, Meng Wang, Zhiyong Pan, Zefeng Wang, Pu Zhou, Jinbao Chen. Research Progress in Tandem-Pumped High-Power and High-Beam Quality Ytterbium-Doped Fiber Laser[J]. Acta Optica Sinica, 2023, 43(17): 1714009.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!