激光技术, 2023, 47 (2): 247, 网络出版: 2023-04-12  

电致定向红外靶标指向误差优化技术研究

Research on electro-directional infrared target pointing error optimization technology
作者单位
北京信息科技大学 仪器科学与光电工程学院, 北京 100192
摘要
为了提高电致定向型红外靶标在挂载飞行过程中动态指向精度, 在硬件限制的位置信息更新频率难以提高的条件下, 提出了卡尔曼滤波算法对靶标的位置信息进行预测从而提升更新速率的解决方案, 利用全球定位系统和惯性导航系统的数据, 建立了基于飞行速度、姿态和位置信息采样频率等因素的动态指向误差模型, 并进行了理论分析和实验验证。结果表明, 对红外靶标系统在匀速直线飞行过程中将位置采样率由5 Hz提升至10 Hz时, 指向角误差减小了54.66%。此研究基于现有条件, 为减小定向辐射型红外靶标动态指向误差提供了一种有益的尝试。
Abstract
In order to improve the dynamic pointing accuracy of electro-directional infrared targets during mount flight, under the condition that the the update frequency of position information is difficult to increase due to the hardware limit, a solution for the Kalman filter algorithm was proposed to predict the position information of the target and to increase the update rate. The model of dynamic pointing error based on factors such as flight speed, attitude, and sampling frequency of position information is established. Theoretical analysis and experimental verification were carried out. The results show that when the position sampling rate of the infrared target system is increased from 5 Hz to 10 Hz during the uniform linear flight, the pointing angle error is reduced by 54.66%. This study provides a useful attempt to reduce the dynamic pointing error of directional radiative infrared targets based on existing conditions.
参考文献

[1] LI B, WANG W N, TANG J. Study on simulation space aim of novel optical dynamic target[J]. Chinese Journal of Engineering Design, 2008, 15(3):201-205(in Chinese).

[2] YANG X Y, L Y, LIU Y, et al. Research on target infrared characteristic modeling technology in target system[J]. Laser & Infrared, 2021, 51(10):1336-1341(in Chinese).

[3] YU X J, ZHENG Y Ch, GUO Ch L, et al. Analysis of infrared detectability hypersonic vehicles under different background[J]. Laser Technology, 2018, 42(5):627-632(in Chinese).

[4] CHEN G, ZHOU Ch, LIU H G. Influence of time delay for attitude angle matching transfer alignment[J]. Journal of Chinese Inertial Technology, 2014, 22(2):172-176(in Chinese).

[5] YE D M, XIE L M, CHEN J. Ground simulation analysis of satellite-ground optical communication based on tracking error compensation[J]. Laser Technology, 2012, 36 (3):346-348(in Chinese)

[6] XIE M J, MA J G, FU Ch Y, et al. Precision tracking and pointing technologies in space optical communication[J]. Opto-Electronic Engineering, 2000, 27(1):13-16(in Chinese).

[7] WU R X. Research on line-of-sight pointing technology of spatial optical communication system[D]. Changchun: Changchun University of Science and Technology, 2020:1-64(in Chinese).

[8] ZHAO X, LIU Y Q, DONG Sh F. Line-of-sight initial alignment model and test in dynamic space laser communication[J]. Chinese Journal of Lasers, 2014, 41(5):0505009(in Chinese).

[9] ZHANG Y D, LIU W Sh, LUO Y H, et al. Pointing error modification method for three-axis optoelectronic tracking system[J]. Opto-Electronic Engineering, 2014, 41(6):51-55(in Chinese).

[10] DING J Ch, LI G N, BAN J Ch. Research on SINS systematic calibration technique based on dual-axis turntable[J]. Ship Science and Technology, 2015, 37(4):76-78(in Chinese).

[11] WU X T, GAO Q W. Time delay error compensation and filtering model in pass alignment[J]. Journal of Ordnance Equipment Engineering, 2012, 33(5):14-17(in Chinese).

[12] CHEN Y, ZHAO Y, LI Q Sh, et al. Compensation method for master inertial navigation system information delay in rapid transfer alignment[J]. Journal of Chinese Inertial Technology, 2013, 21(5):576-580(in Chinese).

[13] HAN Ch, TONG Sh F, CHEN Zh D, et al. Analysis of influence of GPS/INS system errors on pointing algorithm in space optical communication[J]. Infrared and Laser Engineering, 2009, 38(4):650-654(in Chinese)

[14] PENG D C. Basic principles and applications of Kalman filtering[J]. Software Guide, 2009, 8(11):32-34(in Chinese).

[15] NIE Q. Nonlinear filtering and its application in navigation system[D]. Harbin: Harbin Engineering University, 2008:63-92(in Ch-inese).

[16] JANG X D, YU J Y, ZHU L K. Research of combined navigation technology based on position sensitive detectors[J]. Laser Technology, 2019, 43(3):335-340(in Chinese).

[17] WU R X, DONG Y, TIAN Ch J, et al. Line-of-sight pointing technology of laser communication system based on Kalman filter[J]. Optical Communication Technology, 2018, 42(9):30-32(in Ch-inese).

[18] YU Zh J, FU J, HAN H X. Research on modeling and compensation application of MEMS gyro stochastic error[J]. Ship Electronic Engineering, 2019, 39(8):76-78(in Chinese).

[19] WANG X L, CHEN T, DU Y. The drift method of fiber optic gyros based on the ARMA model[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1):5-7(in Chinese).

[20] HAN M, TANG X L, MENG J Y, et al. Target tracking algorithm based on improved Kalman filter and mean-shift[J]. Tactical Missile Technology, 2019(1): 115-123(in Chinese).

[21] LIN X, LIU J Zh. New Kalman filtering algorithm for target tracking with colored noise[J]. Journal of Chinese Inertial Technology, 2018, 26(6):830-834(in Chinese).

白浩然, 刘洋. 电致定向红外靶标指向误差优化技术研究[J]. 激光技术, 2023, 47(2): 247. BAI Haoran, LIU Yang. Research on electro-directional infrared target pointing error optimization technology[J]. Laser Technology, 2023, 47(2): 247.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!