光学学报, 2023, 43 (16): 1623009, 网络出版: 2023-08-01  

法布里-珀罗光学微腔及其应用 下载: 1353次特邀综述

Fabry-Pérot Optical Microcavity and Its Application
刘清权 1,3关学昱 1,3,4崔恒毅 1,3,4王少伟 1,3,4,*陆卫 1,2,3,4,**
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083
2 上海科技大学物质科学与技术学院,上海 201210
3 上海节能镀膜玻璃工程技术研究中心,上海 200083
4 中国科学院大学,北京 100049
图 & 表

图 1. F-P微腔的基本原理。(a)F-P微腔的一般模型;(b)F-P滤光片的透过率随波长的变化,其中实线和虚线分别代表全介质F-P微腔和金属F-P微腔的透过率。金属F-P滤光片选用50 nm厚的银膜28,腔层选用厚度为135 nm的SiO2层(@550 nm);全介质F-P的膜堆表达式为Sub|(HL)6 H 2L H(LH)6,Sub代表石英衬底,H为厚度为62.5 nm的Ta2O5(@550 nm),L为厚度为94.18 nm的SiO2。;(c)全介质F-P微腔;(d)全介质F-P微腔的电场分布

Fig. 1. Basic principle of F-P microcavity. (a) General model of F-P microcavity; (b) transmission rate of F-P filter as a function of wavelength, where solid line and dashed line represent transmission rate of all-dielectric F-P microcavity and metal F-P microcavity, respectively. A 50 nm thick silver film is used in metal F-P filter[28], and a 135 nm thick SiO2 layer (@550 nm) is used in cavity layer. Multilayer stack expression for all-dielectric F-P filter is Sub|(HL)6 H 2L H (LH)6, where Sub represents quartz substrate, H represents a 62.5 nm thick Ta2O5 layer (@550 nm), and L represents a 94.18 nm thick SiO2 layer; (c) all-dielectric F-P microcavity; (d) electric field distribution of all-dielectric F-P microcavity

下载图片 查看原文

图 2. 线性渐变F-P滤光片示意图

Fig. 2. Schematic diagram of linearly variable F-P filter

下载图片 查看原文

图 3. 集成F-P滤光片示意图。(a)集成F-P滤光片三维结构示意图;(b)透射谱示意图

Fig. 3. Schematic diagram of integrated F-P filter. (a) Schematic illustration of 3D structure of integrated F-P filter; (b) schematic diagram of transmission spectrum

下载图片 查看原文

图 4. 全介质集成F-P滤光片。(a)组合刻蚀法示意图;(b1)16通道中红外集成F-P滤光片4;(b2)16通道中红外集成F-P滤光片透过率4;(c1)128通道近红外集成F-P滤光片5;(c2)128通道近红外集成F-P滤光片透过率5;(d1)~(d4)实现实践十号卫星在轨验证57

Fig. 4. All-dielectric integrated F-P filter. (a) Schematic diagram of combinatorial etching technique; (b1) infrared integrated F-P filter with 16 channels[4]; (b2) transmittance of infrared integrated F-P filter with 16 channels[4]; (c1) near-infrared integrated F-P filter with 128 channels[5]; (c2) transmittance of near-infrared integrated F-P filter with 128 channels[5];(d1)-(d4) realizing in-orbit verification of No. 10 Shijian Satellite[57]

下载图片 查看原文

图 5. 电子束灰度光刻制备集成金属F-P滤光片60。(a)~(b)集成金属F-P滤光片示意图;(c)电子束灰度曝光技术

Fig. 5. Fabrication of integrated metal F-P filter using electron beam grayscale lithography[60]. (a)-(b) Schematic diagram of integrated metal F-P filter; (c) electron beam grayscale exposure technique

下载图片 查看原文

图 6. 激光直写灰度光刻技术制备集成F-P滤光片10。(a)~(b)在InGaAs探测器上集成的全介质F-P滤光片;(c)F-P滤光片的扫描电镜(SEM)截面图;(d)~(e)透过率随腔长变化图;(f)探测器中不同像元响应随波长变化图

Fig. 6. Fabrication of integrated F-P filter using laser direct-writing grayscale lithography[10]. (a)-(b) Integrated all-dielectric F-P filter on InGaAs detector; (c) scanning electron microscope (SEM) cross-sectional image of F-P filter; (d)-(e) transmission variation with cavity length; (f) wavelength-dependent response of different pixels in detector

下载图片 查看原文

图 7. 超表面F-P滤光片62。(a)~(b)超表面F-P滤光片示意图;(c)超表面F-P滤光片制备SEM结果;(d)实验测得的透过率图

Fig. 7. Metasurface-based F-P filter[62]. (a)-(b) Schematic diagrams of metasurface-based F-P filter; (c) SEM image of fabricated metasurface-based F-P filter; (d) experimentally measured transmission spectrum of filter

下载图片 查看原文

图 8. 光谱重构算法示意图21

Fig. 8. Schematic diagram of spectral reconstruction algorithm[21]

下载图片 查看原文

图 9. 短波红外微型光谱仪重构结果10。(a)以100 nm步长从1000 nm到1600 nm的重构窄带光谱;(b)用2 nm半峰全宽(FWHM)×50像素组和5 nm FWHM×20像素组重构了1500 nm处的窄带光谱。虚线是由20像素芯片光谱重构的光谱的Lorentz拟合,其带宽为5 nm

Fig. 9. Reconstruction results of shortwave infrared miniature spectrometer[10]. (a) Reconstructed narrowband spectra from 1000 nm to 1600 nm with 100 nm step; (b) reconstructed narrowband spectra of 1500 nm with 2 nm full width at half maximum (FWHM) by 50 pixel set, and 5 nm FWHM by 20 pixel set. Dashed line is Lorentz fit of spectrum reconstructed by 20 pixel chip-spectrum, and its FWHM is 5 nm

下载图片 查看原文

图 10. CdS激光器结构及表征、测试结果75。(a)CdS激光器结构示意图;(b)CdS 纳米带与微腔光子作用界面示意图;(c)CdS纳米带与DBR的SEM图;(d)CdS激光器在不同泵浦功率下的光致发光光谱;(e)CdS激光器辐射强度与泵浦功率的关系

Fig. 10. Structure diagram and characterization and measurement results of CdS laser[75]. (a) Schematic diagram of CdS laser structure; (b) schematic illustration of interface between CdS nanoribbon and microcavity photon; (c) SEM images of CdS nanoribbon and DBR; (d) photoluminescence spectra of CdS laser at different pump powers; (e) relationship between emission intensity of CdS laser and pump power

下载图片 查看原文

图 11. BP激光器结构及表征、测试结果78。(a)BP纳米片嵌入DBR微腔结构示意图;(b)BP激光器在不同泵浦功率下的光致发光光谱;(c)自发辐射状态下不同泵浦功率所对应的BP激光器光致发光光谱;(d)激光FWHM与泵浦功率的关系曲线;(e)BP激光器辐射强度与泵浦功率的关系

Fig. 11. Structure diagram and characterization and measurement results of BP laser[78]. (a) Schematic diagram of BP nanosheet embedded in a DBR microcavity structure; (b) photoluminescence spectra of BP laser at different pump powers; (c) photoluminescence spectra of BP laser under spontaneous emission states at different pump powers; (d) relationship curve between laser FWHM and pump power; (e) relationship between BP laser radiation intensity and pump power

下载图片 查看原文

图 12. 单层WS2微腔结构示意图及测试结果89。(a)单层WS2嵌埋DBR微腔结构;(b)单层WS2在DBR微腔内的强耦合效应

Fig. 12. Schematic of structure of monolayer WS2 embedded in a microcavity and it's measurement results[89]. (a) Structure of monolayer WS2 embedded in a DBR microcavity; (b) strong coupling effect of monolayer WS2 in DBR microcavity

下载图片 查看原文

图 13. WS2/hBN/WS2异质结微腔结构示意图及测试结果97。(a)WS2/hBN/WS2异质结嵌埋微腔结构与异质结的结构示意图;(b)异质结激子与微腔光子的强耦合现象

Fig. 13. Schematic of structure of WS2/hBN/WS2 heterostructure embedded in a microcavity and it's measurement results[97]. (a) Schematic of structures of WS2/hBN/WS2 heterostructure embedded in a microcavity and heterostructure; (b) strong coupling phenomenon between heterostructure excitons and microcavity photons

下载图片 查看原文

图 14. 单层WS2微腔结构及其测试结果105。(a)单层WS2嵌埋DBR微腔结构;(b)室温下单层WS2的表征。蓝色曲线为PDMS上单层WS2的吸收光谱,红色曲线为底部DBR上单层WS2的光致发光光谱,深蓝色曲线为极化激元辐射光谱;(c)角度分辨反射率光谱,显示单层WS2嵌埋DBR微腔结构强耦合现象;(d)阈值以上角分辨光致发光光谱,显示单层WS2的BEC现象

Fig. 14. Schematic of structure of monolayer WS2 embedded in microcavity and it's measurement results[105]. (a) Structure of monolayer WS2 embedded in a DBR microcavity; (b) characterization of monolayer WS2 at room temperature. Blue curve represents absorption spectrum of monolayer WS2 on PDMS, red curve represents photoluminescence spectrum of monolayer WS2 on bottom DBR, and dark blue curve represents polariton radiation spectrum; (c) angle-resolved reflectivity spectrum, showing strong coupling phenomenon of structure of monolayer WS2 embedded in DBR microcavity; (d) angle-resolved photoluminescence spectrum above threshold, showing Bose-Einstein condensation (BEC) phenomenon of monolayer WS2

下载图片 查看原文

图 15. 光纤F-P微腔用于折射率、温度传感示例。(a)光纤F-P干涉仪(FPI)的基本结构109;(b)温度诱导传感器形变模拟图110;(c)不同温度下(0、20、40 ℃)光纤FPI悬臂的干涉光谱110;(d)随温度变化的F-P微腔腔长解调关系110

Fig. 15. Examples of fiber F-P microcavity used for refractive index and temperature sensing. (a) Basic structure of fiber F-P interferometer (FPI)[109]; (b) simulation image of temperature-induced sensor deformation[110]; (c) interference spectra of fiber FPI cantilever at different temperatures (0, 20, and 40 ℃)[110]; (d) demodulation relationship of F-P microcavity length with temperature change[110]

下载图片 查看原文

图 16. 基于GO薄膜的F-P微腔声传感原理图117

Fig. 16. Schematic of acoustic sensing principle of F-P microcavity based on GO (graphene oxide) film[117]

下载图片 查看原文

图 17. 湍流流速测量系统119。(a)气流流速测量系统示意图;在气流流速为(b)93 m/s;(c)54.5 m/s下,两传感器的峰位置变化

Fig. 17. Turbulent airflow velocity measurement system[119]. (a) Schematic diagram of airflow velocity measurement system; peak position change of two sensors at airflow velocity of (b) 93 m/s; (c) 54.5 m/s

下载图片 查看原文

图 18. 腔共振辅助测量低维材料折射率的原理示意图123。(a)将低维材料嵌埋到n个腔中的结构示意图;(b)相对应的有无嵌埋低维材料区域的透射谱;(c)实心点和空心点表示通过腔共振法计算出的单层WS2材料的nk,相对应的实线为文献中椭偏仪测得的结果;(d)无偏振、0°偏振以及90°偏振下的嵌埋CdS纳米带的微腔微区透射谱,通过腔共振法测量得到CdS纳米带在716.7 nm波长处o光和e光的折射率分别为2.42和2.45

Fig. 18. Schematic diagram of principle of cavity resonance-assisted measurement of low-dimensional material refractive index[123]. (a) Structure diagram of embedding low-dimensional material into n cavities; (b) transmission spectra of corresponding regions with and without embedded low-dimensional material; (c) solid and hollow points represent n and k of monolayer WS2 material calculated by cavity resonance method, and corresponding lines are from recent work determined by spectroscopic ellipsometry for reference; (d) no polarization, 0° polarization, and 90° polarization microcavity microregion transmission spectra of embedded CdS nanoribbon. Refractive indices of o and e lights of CdS nanoribbon are 2.42 and 2.45 at wavelength of 716.7 nm extracted by cavity resonance method, respectively

下载图片 查看原文

图 19. 细胞激光器示例。(a)细胞激光的实验配置124。细胞激光通过显微镜物镜由外部激光泵浦。通过同一物镜收集的荧光光线,通过分光镜分离并发送到光谱仪和相机;(b)细胞被放置在两个高反射镜之间并沉降到底部镜面上;(c)通过分子相互作用产生矢量光束的示意图126。不同组装(单体、寡聚体、原纤维和纤维)的淀粉样蛋白()与涂覆在LC液滴上的脂质单层相互作用,触发矢量光束的拓扑转换

Fig. 19. Examples of cell laser. (a) Experimental setup for cell laser[124]. Cell laser is externally pumped by a laser through a microscope objective. Fluorescence light collected by same objective is separated by a dichroic mirror and sent to a spectrometer and a camera; (b) cells are placed between two high-reflective mirrors and settle onto bottom mirror surface; (c) schematic of generating vector beams through molecular interactions[126]. Interactions of amyloid-beta () with lipid monolayers coated on LC droplets with different assemblies (monomers, oligomers, protofibrils, and fibrils), triggering topological transformation of vector beams

下载图片 查看原文

图 20. 手性激光器与激光发射成像示例129。(a)左图:手性分子作为激光增益介质,夹在F-P微腔中的手性激光器示意图。左旋(L)和右旋(R)圆偏振激光交替使用作为泵浦光源。右图:手性生物分子的细节128;(b)实验装置示意图。插图为检测细胞外环境中不同类型生化信号的示意图

Fig. 20. Example of chiral laser and laser emission imaging. (a) Figure on left: schematic diagram of a chiral laser with chiral molecules as gain media sandwiched in an F-P microcavity. Left-handed (L) and right-handed (R) circularly polarized lasers are alternately used as pump light sources. Figure on right: details of chiral biomolecules[128]; (b) schematic diagram of experimental setup. Illustration is diagram of detecting different types of biochemical signals in extracellular environment[129]

下载图片 查看原文

图 21. 基于F-P微腔的偏振/光谱调控。(a)基于超表面的纳米腔的横截面示意图14;(b)、(c)图(a)结构在不同偏振入射光下透射谱的实验结果14;(d)超界面光谱-偏振滤波器模型18;(e)超界面滤波器的 SEM 截面测试图像18;(f)超界面滤波器实验测试结果。实线和点线分别为超界面滤波器的 TM 波和TE 波透过率,而虚线和点划线分别为超界面滤波器和裸光栅的偏振消光比18

Fig. 21. Polarization/spectral control based on F-P microcavity. (a) Schematic cross-section of a nano-cavity based on a metasurface[14]; (b), (c) experimental results of transmission spectra of structure in (a) under different polarized incident lights[14]; (d) metainterface spectrum-polarization filter model[18]; (e) cross-sectional image of metainterface filter captured by SEM[18]; (f) experimental results of metainterface filter. Solid line and dotted line are transmittances of TM and TE lights of metainterface filter, respectively, while dashed line and dash-dot line are polarization extinction ratios of metainterface filter and bare grating, respectively[18]

下载图片 查看原文

图 22. 基于F-P微腔的光束整形示例。(a)曲率半径分别为5 µm(顶部)和3 µm(底部)的半球微腔的SEM横截面图像12。左侧图形显示原始图像,点显示裂缝。右侧图形显示生长模型的虚线图像;(b)耦合开放式微腔结构示意图13;(c)模式分裂及相应耦合腔结构图示(上图),以及激光透射实验获得的实验结果(点)和理论值(虚线)(下图)13

Fig. 22. Example of beam shaping based on F-P microcavity. (a) SEM cross-sectional images of a hemispherical microcavity with a radius of curvature of 5 µm (top) and 3 µm (bottom), respectively. Left graph shows original image, and dots show cracks. Right graph shows dashed image of growth model[12]; (b) schematic diagram of structure of coupled open microcavity[13]; (c) schematic diagram of mode splitting and corresponding coupled cavity structure (top panel), and experimental results (dots) and theoretical values (dashed lines) obtained from laser transmission experiments (bottom panel)[13]

下载图片 查看原文

图 23. 引入超表面结构的F-P微腔光束整形结果。(a)结构示意图。放置在第二个DBR表面上的超表面与聚焦的高斯光束的相位演化相匹配,从而在横向方向(xy方向)也限制光场;(b)纵向模式指数q = 5时,有限差分时域建模计算的相位演化;(c)图(b)模式的光强分布;(d)设计“H”型图案的超表面微腔19

Fig. 23. Beam shaping results of F-P microcavity with introduction of metasurface structure. (a) Structure diagram. Metasurface placed on second DBR surface matches phase evolution of focused Gaussian beam, thus limiting optical field in transverse direction (xy direction) as well; (b) phase evolution calculated by finite-difference time-domain modeling for longitudinal mode index q=5; (c) light intensity distribution of mode in (b) ; (d) design of "H" pattern of metasurface microcavity[19]

下载图片 查看原文

图 24. 多涡旋脉冲光束激光器16。空间编码通过组合涡旋光束的特定组件实现,而时间编码则通过调制脉冲实现

Fig. 24. Multivortex pulsed beam laser[16]. Spatial encoding is achieved by combining specific components of vortex beam, while temporal encoding is achieved by modulating pulse

下载图片 查看原文

刘清权, 关学昱, 崔恒毅, 王少伟, 陆卫. 法布里-珀罗光学微腔及其应用[J]. 光学学报, 2023, 43(16): 1623009. Qingquan Liu, Xueyu Guan, Hengyi Cui, Shaowei Wang, Wei Lu. Fabry-Pérot Optical Microcavity and Its Application[J]. Acta Optica Sinica, 2023, 43(16): 1623009.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!