量子电子学报, 2023, 40 (2): 238, 网络出版: 2023-04-15  

超快光场驱动的二氧化钒薄膜相变研究进展

Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
摘要
二氧化钒(VO2) 是一种典型的强关联电子材料, 当达到相变阈值时, 会可逆地从绝缘单斜相转变到金属金红石相, 这种相变主要通过温度、光照、电场、磁场、应力等激励条件激发。相突变可在亚皮秒时间尺度内发生, 并会伴随着光学透过率、折射率和磁化率等特性的显著变化,其中相变前后电阻率会发生 3~5 个数量级的变化, 这使得 VO2 在智能节能窗、光电探测、光电存储、光开关等领域有着重要的应用前景。首先介绍了 VO2 的相变机制, 主要有电子关联驱动、晶格结构驱动以及两者共同驱动, 接着重点介绍了利用超快时间分辨技术, 尤其是太赫兹时域光谱技术, 来研究 VO2 薄膜的相变动力学过程, 最后, 介绍了基于 VO2 薄膜的太赫兹调制器、太赫兹滤波器、太赫兹开关等领域的应用研究。
Abstract
Vanadium dioxide(VO2) is an archetypal strongly correlated-electron material. When the phase transition threshold is reached, there will be a reversible transition from the insulating monoclinic phase to the metallic rutile phase for VO2. The transition can be induced mainly by thermal, optical, electrical, magnetic field, and strain. The abrupt change of VO2 phase can occur in subpicosecond time scales, along with the significant change of optical reflectivity, refractive index, magnetic susceptibility, and other physical quantities. In particular, the resistivity of VO2 will change in three to five orders of magnitude before and after the phase change, which makes VO2 has great application prospects in the fields of intelligent energy-saving windows, photoelectric detection, photoelectric storage, optical switches, and other fields. This review first describes the phase transitions mechanism of VO2, which is driven by the electron correlation or the lattice structure alone or both. Then it focuses on employing ultrafast time-resolved techniques, particularly terahertz time-domain spectroscopy techniques, to study the phase transition dynamics process of VO2 thin films. Finally, the application research of terahertz modulators, terahertz filters, terahertz switches, and other devices based on VO2 thin films are introduced.
参考文献

[1] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature [J]. Physical Review Letters, 1959, 3(1): 34-36.

[2] Lappalainen J, Heinilehto S, Jantunen H, et al. Electrical and optical properties of metal-insulator-transition VO2 thin films [J]. Journal of Electroceramics, 2009, 22: 73-77.

[3] Cao X, Chang T, Shao Z, et al. Challenges and opportunities toward real application of VO2-based smart glazing [J]. Matter, 2020, 2(4): 862-881.

[4] Lysenko S, Rua A J, Vikhnin V, et al. Light-induced ultrafast phase transitions in VO2 thin film [J]. Applied Surface Science, 2006, 252(15): 5512-5515.

[5] Wu B, Zimmers A, Aubin H, et al. Electric-field-driven phase transition in vanadium dioxide [J]. Physical Review B, 2011, 84(24): 241410.

[6] Leroy J, Crunteanu A, Bessaudou A, et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes [J]. Applied Physics Letters, 2012, 100: 213507.

[7] Boriskov P, Velichko A, Pergament A, et al. The effect of electric field on metal-insulator phase transition in vanadium dioxide [J]. Technical Physics Letters, 2002, 28: 406-408.

[8] Liu M, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial [J]. Nature, 2012, 487(7407): 345-348.

[9] Chen X, Wang F, Xu J. Preparation of VO2(B) nanoflake with glycerol as reductant agent and its catalytic application in the aerobic oxidation of benzene to phenol [J]. Topics in Catalysis, 2011, 54: 1016-1023.

[10] Muraoka Y, Yamauchi T, Ueda Y, et al. Efficient photocarrier injection in a transition metal oxide heterostructure [J]. Journal of Physics: Condensed Matter, 2002, 14(49): L757-L763.

[11] Ruzmetov D, Senanayake S, Narayanamurti V, et al. Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films [J]. Physical Review B, 2008, 77: 195442.

[12] Ruzmetov D, Zawilski K, Narayanamurti V, et al. Structure-functional property relationships in RF-sputtered vanadium dioxide thin films [J]. Journal of Applied Physics, 2007, 102(11): 113715-113717.

[13] Sahana M B, Subbanna G A, Shivashankar S A. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition [J]. Journal of Applied Physics, 2002, 92(11): 6495-6504.

[14] Vernardou D, Bei A, Louloudakis D, et al. Oxygen source-oriented control of APCVD VO2 for capacitive applications [J]. Journal of Electrochemical Science and Engineering, 2016, 6(2): 165-173.

[15] Mani R, Ramanathan S. Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide(VO2) [J]. Applied Physics Letters, 2007, 91(6): 062104.

[16] Chae B, Kim H T, Yun S. Characteristics of W- and Ti-doped VO2 thin films prepared by sol-gel method [J]. Electrochemical and Solid-State Letters, 2008, 11(6): D53-56.

[17] Fallah Vostakola M, Mirkazemi S M, Yekta B. Structural, morphological and optical properties of W-doped VO2 thin films prepared by sol-gel spin coating method [J]. International Journal of Applied Ceramic Technology, 2019, 16: 943-950.

[18] Muraoka-Y, Hiroi Z. Metal-insulator transition of VO2 thin films grown on TiO2(001) and(110) substrates [J]. Applied Physics Letters, 2002, 80(4) : 583-585.

[19] Gupta A, Aggarwal R, Gupta P, et al. Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si(001) [J]. Applied Physics Letters, 2009, 95(11): 111915.

[20] Novodvorsky O A, Parshina L S, Khramova O D, et al. Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films [J]. Semiconductors, 2015, 49(5): 563-569.

[21] Lysenko S, Rúa A, Vikhnin V, et al. Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation [J]. Physical Review B, 2007, 76(3): 035104.

[22] Jepsen P U, Fischer B M, Thoman A, et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy [J]. Physical Review B, 2006, 74(20): 205103.

[23] Kübler C, Ehrke H, Huber R, et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2 [J]. Physical Review Letters, 2007, 99(11): 116401.

[24] Nakajima M, Takubo N, Hiroi Z, et al. Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy [J]. Applied Physics Letters, 2008, 92(1): 011907.

[25] Wall S, Wegkamp D, Foglia L, et al. Ultrafast changes in lattice symmetry probed by coherent phonons [J]. Nature communications, 2012, 3(1): 721.

[26] Hada M, Okimura K, Matsuo J. Photo-induced lattice softening of excited-state VO2 [J]. Applied Physics Letters, 2011, 99(5): 051903.

[27] Cavalleri A, Tóth C, Siders C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition [J]. Physical Review Letters, 2001, 87(23): 237401.

[28] Gray A X, Hoffmann M C, Jeong J, et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide [J]. Physical Review B, 2018, 98(4): 045104.

[29] Sun D D, Chen Z, Wen Q Y, et al. VO2 low temperature deposition and terahertz transmission modulation [J]. Acta Physica Sinica, 2013, 62(1): 401-406.

[30] Liu H W, Wong L M, Wang S J, et al. Ultrafast insulator-metal phase transition in vanadium dioxide studied using optical pump-terahertz probe spectroscopy [J]. Journal of Physics Condensed Matter: An Institute of Physics Journal, 2012, 24: 415604.

[31] Lee K W, Kweon J J, Lee C, et al. Infrared-wave number-dependent metal-insulator transition in vanadium dioxide nanoparticles [J]. Applied Physics Letters, 2010, 96: 243111-243113.

[32] Baum P, Yang D S, Zewail A H. 4D visualization of transitional structures in phase transformations by electron diffraction [J]. Science, 2007, 318(5851): 788-792.

[33] Cocker T L, Titova L V, Fourmaux S, et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide [J]. Physical Review B, 2012, 85(15): 155120.

[34] Xue X, Jiang M, Li G, et al. Photoinduced insulator-metal phase transition and the metallic phase propagation in VO2 films investigated by time-resolved terahertz spectroscopy [J]. Journal of Applied Physics, 2013, 114: 193506.

[35] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

[36] Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime [J]. IEEE Photonics Journal, 2009, 1(2): 99-118.

[37] Luo M H, Xu M J, Hunang Q W, et al. Research progress of metal-insulator phase transition mechanism in VO2 [J]. Acta Physica Sinica, 2016, 65(4): 5-12.

[38] Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or Mott-Hubbard? A view from band theory [J]. Physical Review Letters, 1994, 72(21): 3389-3392.

[39] Rice T, Pouget J P. Comment on “VO2: peierls or mott-hubbard? a view from band theory" [J]. Physical Review Letters, 1994, 73: 3042.

[40] Goodenough J B. The two components of the crystallographic transition in VO2 [J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500.

[41] Nakajima M, Takubo N, Hiroi Z, et al. Study of photo-induced phenomena in VO2 by terahertz pump-probe spectroscopy [J]. Journal of Luminescence, 2009, 129(12): 1802-1805.

[42] Cavalleri A, Rini M, Chong H H W, et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption [J]. Physical Review Letters, 2005, 95(6): 067405.

[43] Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide [J]. Physical Review B, 1975, 11(11): 4383-4395.

[44] Paquet D, Leroux-Hugon P. Electron correlations and electron-lattice interactions in the metal-insulator, ferroelastic transition in VO2: A thermodynamical study [J]. Physical Review B, 1980, 22(11): 5284-5301.

[45] Kim H T, Lee Y, Kim B J, et al. Monoclinic and correlated metal phase in VO2 as evidence of the mott transition: Coherent phonon analysis [J]. Physical Review Letters, 2007, 97: 266401.

[46] Koethe T C, Hu Z, Haverkort M W, et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO2 [J]. Physical Review Letters, 2006, 97(11): 116402.

[47] Biermann S, Poteryaev A, Lichtenstein A I, et al. Dynamical singlets and correlation-assisted peierls transition in VO2 [J]. Physical Review Letters, 2005, 94(2): 026404.

[48] Roach W R, Balberg I. Optical induction and detection of fast phase transition in VO2 [J]. Solid State Communications, 1971, 9(9): 551-555.

[49] Karakurt I, Boneberg J, Leiderer P, et al. Transmission increase upon switching of VO2 thin films on microstructured surfaces [J]. Applied Physics Letters, 2007, 91: 091907.

[50] Becker M, Buckman A B, Walser R M, et al. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2 [J]. Applied Physics Letters, 1994, 65(12): 1507-1509.

[51] Cavalleri A, Dekorsy T, Chong H W, et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale [J]. Physical Review B, 2004, 70: 161102.

[52] Rini M, Hao Z, Schoenlein R W, et al. Optical switching in VO2 films by below-gap excitation [J]. Applied Physics Letters, 2008, 92(18):181904.

[53] Morrison V R, Chatelain R P, Tiwari K L, et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction [J]. Science, 2014, 346(6208): 445-448.

[54] Otto M, René de Cotret L, Valverde-Chavez D A, et al. How optical excitation controls the structure and properties of vanadium dioxide [J]. Proceedings of the National Academy of Sciences, 2019, 116(2): 450-455.

[55] Xiao Y, Zhai Z H, Shi Q W, et al. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy [J]. Applied Physics Letters, 2015, 107(3): 031906.

[56] mond N, Ibrahim A, Torriss B, et al. Impact of tungsten doping on the dynamics of the photo-induced insulator-metal phase transition in VO2 thin film investigated by optical pump-terahertz probe spectroscopy [J]. Applied Physics Letters, 2017, 111(9): 092105.

[57] Wang C L, Tian Z, Xing Q R, et al. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy [J]. Acta Physica Sinica, 2010, 59(11): 7857.

[58] Cocker T L, Titova L V, Fourmaux S, et al. Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film [J]. Applied Physics Letters, 2010, 97: 221905.

[59] Pashkin A, Kubler C, Ehrke H, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy [J]. Physical Review B, 2011, 83(19): 195120.

[60] Wang C L, Wu S, Li L F, et al. Research on THz time domain spectrum of photo-induced insulator-metal phase transition of VO2 films [J]. Spetroscopy and Spectral Analysis, 2015, 35(11): 3046-3049.

[61] Yang P D, Ouyang C, Hong T S, et al. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique [J]. Acta Physica Sinica, 2020, 69(20): 88-95.

[62] Becker M F, Buckman A B, Walser R M, et al. Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2 [J]. Journal of Applied Physics, 1996, 79(5): 2404-2408.

[63] Lysenko S, Vikhnin V, Fernandez F, et al. Photoinduced insulator-to-metal phase transition in VO2 crystalline films and model of dielectric susceptibility [J]. Physical Review B, 2007, 75(7): 075109.

[64] Abreu E, Gilbert Corder S N, Yun S J, et al. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films [J]. Physical Review B, 2017, 96(9): 094309.

[65] Clark J K, Ho Y L, Matsui H, et al. Photoinduced metal-like phase of VO2 with subns recovery [J]. ACS Photonics, 2020, 7(9): 2395-2404.

[66] Feng H Q. Research on Preparation and Phase Transition Properties in the Terahertz Band of Vanadium Oxide Thin Films [D]: Chengdu: University of Electronic Science and Technology of China, 2017.

[67] Wen Q Y, Zhang H W, Yang Q H, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability [J]. Applied Physics Letters, 2010, 97: 021111.

[68] Liu Z Q, Chang S J, Wang X L, et al. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film [J]. Acta Physica Sinica, 2013, 62(13): 130702.

[69] Dong Y, Yu D W, Li G S, et al. Terahertz metamaterial modulator based on phase change material VO2 [J]. Symmetry, 2021, 13: 2230.

[70] Hu F, Wang H, Zhang X L, et al. Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-7.

[71] Zhao S, Hu F R, Xu X L, et al. Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich [J]. Chinese Physics B, 2019, 28(5): 054203.

[72] Fan Y, Qian Y, Yin S, et al. Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial [J]. Materials Research Express, 2019, 6(5): 055809.

[73] Song Z Y , Wang K, Li J W, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials [J]. Optics Express, 2018, 26(6): 7148-7154.

[74] Song C, Wang J, Zhang B, et al. Dual-band/ultra-broadband switchable terahertz metamaterial absorber based on vanadium dioxide and graphene [J]. Optics Communications, 2022, 530(8): 129027.

[75] Yang G S, Yan F P, Du X M, et al. Tunable broadband terahertz metamaterial absorber based on vanadium dioxide [J]. AIP Advances, 2022, 12(4): 045219.

[76] Jiao X F, Zhang Z H, Tong L, et al. Tunable dual broadband terahertz metamaterial absorber based on vanadium dioxide [J]. Applied Sciences, 2020, 10: 7259.

[77] Liu Y C. Research on Terahertz Tunable Absorbers Based on Vanadium Dioxide [D]. Guilin: Guilin University of Electronic Technology of China, 2021.

[78] Wu Y, Xu W, Zhou H, et al. Tunableness of single-band and dual-band absorption and filtering using vanadium-dioxide-based metamaterial [J]. Applied Physics A, 2022, 128(10): 930.

[79] Seo M, Kyoung J, Park H, et al. Active terahertz nanoantennas based on VO2 phase transition [J]. Nano Letters, 2010, 10(6): 2064-2068.

[80] Xiong Y. The Research on Silica Based Vanadium Dioxide Thin Films and Its Applications of Terahertz Switch [D]. Chengdu: University of Electronic Science and Technology of China, 2015.

[81] Choi S B, Kyoung J S, Kim H S, et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film [J]. Applied Physics Letters, 2011, 98(7): 711051.

[82] Coppinger M, Sustersic N, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging [J]. Optical Engineering, 2011, 50(5): 053206.

[83] Vegesna S, Zhu Y, Zhao Y, et al. Terahertz frequency selective surface with reconfigurable polarization characteristics using vanadium dioxide [J]. Journal of Electromagnetic Waves and Applications, 2014, 28(1): 83-90.

[84] Zhao Y C, Zhang Y X, Shi Q W, et al. Dynamic photo-induced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures [J]. ACS Photonics, 2018, 5(8): 3040-3050.

[85] Chen S C, Yuan H K, Zhai Z H, et al. All optically driven memory device for terahertz waves [J]. Optics Letters, 2020, 45(1): 236-239.

王康1, 刘一, 宋立伟. 超快光场驱动的二氧化钒薄膜相变研究进展[J]. 量子电子学报, 2023, 40(2): 238. WANG Kang, LIU Yi, SONG Liwei. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!