红外技术, 2020, 42 (12): 1192, 网络出版: 2021-01-12  

基于 SV-DPI的图像坏元修正 FPGA自动化验证

Automatic Verification of Field Programmable Gate Arrays for Dead Pixel Correction
作者单位
西安微电子技术研究所,陕西西安 710065
摘要
为实现红外图像坏元修正 FPGA(field programmable gate array)的快速验证,提高测试覆盖性,设计了基于 SV-DPI(SystemVerilog-direct programming interface)的 FPGA自动化验证平台。采用 DPI(direct programming interface)编程接口技术,实现了 SystemVerilog平台调用 C++编程语言,构建了针对红外图像坏元数据的生成和检测修正模型,建立了两种语言在事务级( transaction level)模型的通信。结果表明相对于传统验证方法,该平台结构简单,可以快速实现激励产生、参考模型构建、测试结果自动比对等功能,实现了红外图像坏元检测与修正 FPGA的自动化测试,功能覆盖率达到 100%,有效缩短 FPGA测试平台搭建和调试周期,提高了测试效率和测试质量。
Abstract
To accelerate the simulation speed and improve the coverage of verification for a field programmable gate array (FPGA) implemented with dead pixel correction of an infrared image, an FPGA automatic verification platform based on SystemVerilog-Direct programming interface(SV-DPI) was designed. Using DPI programming interface technology, the C++ programming language was invoked by the SV platform. A generator and correction model for dead pixel data of infrared images was built. This established a communication between two languages on the transaction level. The results show that, compared with the traditional verification method, the proposed platform is simple in structure and can quickly generate a test vector, construct a reference model, and check results automatically. It realizes automated verification for an FPGA implemented with dead pixel detection and correction of an infrared image. The function coverage can reach 100%. It effectively shortens the period of construction and debugging for the FPGA verification platform and improves the efficiency and quality of verification.
参考文献

[1] 白俊奇, 蒋怡亮, 赵春光, 等. 红外焦平面阵列探测器盲元检测算法研究[J].红外技术 , 2011, 33(4): 233-235, 240. BAI Junqi,JIANG Yiliang,ZHAO Chunguang, et al. Blind-pixel detection algorithm for infrared focal plane array detector[J]. Infrared Technology, 2011, 33(4): 233-235, 240.

[2] 李炎冰, 梁少峰 , 陈洪亮, 等. 红外焦平面阵列坏元检测算法 [J].电光与控制, 2015, 22(3): 69-71. LI Yanbing, LIANG Shaofeng, CHEN Hongliang, et al. A bad-pixel detection algorithm for infrared focal plane array[J]. Electronics Optics & Control, 2015, 22(3): 69-71.

[3] 胡云生, 胡越黎 , 燕明, 等. 一种图像坏点检测及修正算法 [J].上海大学学报: 自然科学版 , 2018, 24(5): 755-762. HU Yunsheng, HU Yueli, YAN Ming, et al. Detection and correction of dead pixels in an image[J]. Journal of Shanghai University: Natrual Science, 2018, 24(5): 755-762.

[4] 李雷鸣, 张焕春, 张波. 一种基于 FPGA的图像中值滤波器的硬件实现[J].电子工程师 , 2004(2): 48-50. LI Leiming, ZHANG Huanchun, ZHANG Bo. The realization of image median filter based on FPGA[J]. Electronic Engineer, 2004(2): 48-50.

[5] 周珊, 杨雅雯 , 王金波 . 航天高可靠 FPGA测试技术研究 [J].计算机技术与发展, 2017, 27(3): 1-5. ZHOU Shan, YANG Yawen, WANG Jinbo. Research on high reliable FPGA test technology on space flight[J]. Computer Technology and Development, 2017, 27(3): 1-5.

[6] 朱伟杰, 阳徽, 费亚男 , 等. FPGA功能验证自动化技术研究与实践 [J].航天控制, 2017, 35(2): 72-77, 98. ZHU Weijie, YANG Hui, FEI Yanan, et al. Research and practice of automation technology on FPGA function verification[J]. Aerospace Control, 2017, 35(2): 72-77, 98.

[7] 习建博, 朱鹏, 崔留争 . 基于 UVM方法的 FPGA验证技术 [J].电子科学技术, 2016, 3(3): 204-207. XI Jianbo, ZHU Peng, CUI Liuzheng. FPGA verification technology based on UVM[J]. Electronic Science & Technology, 2016, 3(3): 204-207.

[8] 克里斯·斯皮尔. SystemVerilog系统验证 [M]. 2版: 张春等译 . 北京: 科学出版社, 2009. Chris Spear. SystemVerilog for Verification[M]. 2nd Edition: Translated by ZHANG Chun , et al. Beijing: Science Press, 2009.

[9] 韩团军. 快速中值滤波算法研究及其 FPGA硬件实现 [J].电子器件, 2017, 40(3): 697-701. HAN Tuanjun. Research of fast median filtering algorithm and hardware implementation based on FPGA[J]. Chinese Journal of Electron Devices, 2017, 40(3): 697-701.

李艳龙, 杨琪, 王雪峰. 基于 SV-DPI的图像坏元修正 FPGA自动化验证[J]. 红外技术, 2020, 42(12): 1192. LI Yanlong, YANG Qi, WANG Xuefeng. Automatic Verification of Field Programmable Gate Arrays for Dead Pixel Correction[J]. Infrared Technology, 2020, 42(12): 1192.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!