应用激光, 2023, 43 (2): 20, 网络出版: 2023-03-30  

20CrMo钢表面高速激光熔覆工艺参数优化

Optimization of Process Parameters for High-Speed Laser Cladding on 20CrMo Steel Surface
作者单位
新疆大学机械工程学院, 新疆 乌鲁木齐 830017
摘要
为了解决石油钻杆表面受交变载荷冲击导致的失效问题, 同时获取更高质量的耐磨涂层, 采用高速激光熔覆设备, 以JG-3铁基合金作为熔覆粉末, 在20CrMo钢表面制备合金涂层。以激光功率、扫描速度以及送粉速度为优化变量, 涂层硬度以及耐磨性为表征变量, 通过正交试验极差与方差分析获得最优参数组。结果表明, 极差分析中, 工艺参数对涂层显微硬度和磨损失重量的影响程度排序均为扫描速度>送粉速度>激光功率; 方差分析中, 显微硬度和磨损失重量的F值大小均为FB>FC>FA, 表明各因素对高速激光熔覆涂层性能的影响程度排序为扫描速度>送粉速度>激光功率, 这与极差分析结果一致。正交试验获得最优参数组合为: 激光功率900 W、扫描速度65 mm/s、送粉速度4 r/min。
Abstract
In order to solve the failure problem caused by the impact of alternating loads on the surface of the oil drill pipe and obtain a higher quality wear-resistant coating, this paper adopts a high-speed laser cladding equipment, and JG-3 iron-based alloy is used as the cladding powder to coat the surface of 20CrMo steel for the preparation of alloy coatings. Taking laser power, scanning speed and powder feeding speed as optimization variables, and considering coating hardness and wear resistance as characterization variables, the optimal parameter group was obtained through orthogonal test range and variance analysis. Results show that in the range analysis, the order of the influence of process parameters on the microhardness and wear loss weight of the coating is as follows: scanning speed>powder feeding speed>laser power. In the variance analysis, the F values of microhardness and wear loss weight are both FB>FC>FA, indicating that the influence of various factors on the performance of high-speed laser cladding coatings is ranked as follows: scanning speed, powder feeding speed, laser power. This is consistent with the range analysis results. The optimal parameter combination obtained by orthogonal test is laser power 900 W, scanning speed 65 mm/s, powder feeding speed 4 r/min.
参考文献

[1] RAYKIS O. Alternative with a future[J]. Laser Technik Journal, 2017, 14(1): 28-30.

[2] SCHOPPHOVEN T, GASSER A, BACKES G. EHLA: Extreme high-speed laser material deposition[J]. Laser Technik Journal, 2017, 14(4): 26-29.

[3] 张新建, 罗惜照, 杨卫红. 超高速激光熔覆头粉末流场仿真研究[J]. 应用激光, 2021, 41(4): 758-764.

[4] 王强, 杨驹, 牛文娟, 等. 高速激光熔覆铁基TY-2合金组织及力学性能分析[J]. 表面技术, 2021, 50(7): 66-73.

[5] YUAN W Y, LI R F, CHEN Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J]. Surface and Coatings Technology, 2021, 405: 126582.

[6] 王彦芳, 赵晓宇, 陆文俊, 等. 抽油杆接箍表面高速激光熔覆不锈钢涂层的组织与性能[J]. 中国激光, 2021, 48(6): 0602114.

[7] 徐一飞, 孙耀宁, 王国建, 等. 高速激光熔覆铁基合金涂层的组织及性能研究[J]. 中国激光, 2021, 48(10): 1002122.

[8] CUI Z Q, QIN Z, DONG P, et al. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment[J]. Materials Letters, 2020, 259: 126769.

[9] LOU L Y, ZHANG Y, JIA Y J, et al. High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior[J]. Surface and Coatings Technology, 2020, 392: 125697.

[10] WANG H J, ZHANG W, PENG Y B, et al. Microstructures and wear resistance of FeCoCrNi-Mo high entropy alloy/diamond composite coatings by high speed laser cladding[J]. Coatings, 2020, 10(3): 300.

[11] XIAO M Y, GAO H B, SUN L B, et al. Microstructure and mechanical properties of Fe-based amorphous alloy coatings prepared by ultra-high speed laser cladding[J]. Materials Letters, 2021, 297: 130002.

[12] QIAO X X, XIA T L, CHEN P. Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating[J]. Chinese Physics B, 2021, 30(1): 018104.

[13] 张煜, 娄丽艳, 徐庆龙, 等. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.

[14] 周丹, 沈义, 熊大辉, 等. 扫描速度和Ni含量对高速激光熔覆层特性的影响[J]. 应用激光, 2020, 40(4): 579-586.

[15] 杨庆东, 苏伦昌, 董春春, 等. 液压支架立柱27SiMn激光熔覆铁基合金涂层的性能[J]. 中国表面工程, 2013, 26(6): 42-47.

邢学峰, 孙文磊, 陈子豪, 杨凯欣, 周浩南. 20CrMo钢表面高速激光熔覆工艺参数优化[J]. 应用激光, 2023, 43(2): 20. Xing Xuefeng, Sun Wenlei, Chen Zihao, Yang Kaixin, Zhou Haonan. Optimization of Process Parameters for High-Speed Laser Cladding on 20CrMo Steel Surface[J]. APPLIED LASER, 2023, 43(2): 20.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!