人工晶体学报, 2023, 52 (3): 452, 网络出版: 2023-04-13  

AlGaInN/InGaN应变补偿DBR结构设计

Design of AlGaInN/InGaN Strain-Compensation DBR Structure
作者单位
1 太原理工大学新材料界面科学与工程教育部重点实验室, 太原 030024
2 山西浙大新材料与化工研究院, 太原 030000
3 陕西科技大学材料原子·分子科学研究所, 西安 710021
摘要
设计了中心波长为520 nm的AlGaInN/InGaN 应变补偿分布布拉格反射镜(DBR)结构, 通过调节组分参数实现应变补偿, 使DBR整体应变为0, 采用传输矩阵法, 计算了Al0.7Ga0.3-xInxN/InGaN DBR、Al0.8Ga0.2-xInxN/InGaN DBR、Al0.9Ga0.1-xInxN/InGaN DBR的反射光谱。通过对DBR结构参数进行对比, 优化了其结构和反射性能。首先对比高低折射率层生长顺序, 发现对于Al0.8Ga0.14In0.06N/In0.123Ga0.877N DBR, 先生长高折射率层时, 反射率高达99.61%, 而先生长低折射率层时, 反射率仅为97.73%; 然后对比奇数层DBR和偶数层DBR, 发现两者的反射谱几乎重合, 没有显著区别; 通过研究DBR对数对反射率的影响, 发现对数在20~30对时, 反射率随着对数的增加明显上升, 30~40对时反射率增长缓慢; 最后研究了材料组分对反射谱的影响, 发现Al组分高的DBR折射率差大, 反射性能更优, 而相同Al组分的AlGaInN中In含量越低反射率越高。考虑到DBR制备过程中可能出现的厚度和组分偏差, 模拟了厚度和组分出现偏差时反射谱的变化, 发现高低折射率层厚度每增加或减少1 nm, 反射谱红移或蓝移4~5 nm; 而组分的偏差使高反射带带宽和中心波长处反射率发生明显变化。本文的研究为AlGaInN/InGaN DBR的设计和制备提供了一定的理论参考。
Abstract
After adjusting the component parameters of the designed AlGaInN/InGaN DBR structure with a central wavelength of 520 nm, strain compensation was realized and the overall strain of DBR turned to 0. The transmission matrix method was used to calculate the reflectance spectra of Al0.7Ga0.3-xInxN/InGaN DBR, Al0.8Ga0.2-xInxN/InGaN DBR, and Al0.9Ga0.1-xInxN/InGaN DBR. By comparing the structure parameters of DBR, the structure and reflection performance of DBR are optimized. First, high and low refractive index layer growth sequence was compared for Al0.8Ga0.14In0.06N/In0.123Ga0.877N DBR. For DBR with first grown high refractive index layer, the reflectance is as high as 99.61%, while for DBR first grown low refractive index layer, the reflectance is only 97.73%. Then, by comparing the odd-layer DBR and even-layer DBR, it is found that the reflection spectra of the two layers are almost identical, and there is no significant difference. By comparing the periods of DBR, it is found that the reflectance increases obviously with the increase of period number between 20 and 30 pairs, while the reflectance increases slowly with the increase of period number between 30 and 40 pairs. At last, the influence of the material components on the reflection spectrum is studied. It is found that the DBR with high Al component has a large refractive index difference and better reflection performance, while the lower content of In in the same Al component AlGaInN, the higher the reflectivity. Due to the possible deviation of thickness and component in the preparation of DBR, the changes of reflection spectra resulted from the deviation of thickness and components were simulated. It is found that the reflection spectrum is red-shifted or blue-shifted by 4 nm to 5 nm when the layer thickness of high or low refractive index is increased or decreased by 1 nm. While the component deviations caused significant changes in high anti-band bandwidth and reflectivity at central wavelength. The study in this paper provides some theoretical reference for the design and preparation of AlGaInN/InGaN DBR.
参考文献

[1] WARREN M E, GOURLEY P L, HADLEY G R, et al. On-axis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector[J]. Applied Physics Letters, 1992, 61(13): 1484-1486.

[2] HAGLUND , HASHEMI E, BENGTSSON J, et al. Progress and challenges in electrically pumped GaN-based VCSELs[C]//SPIE Photonics Europe. Proc SPIE 9892, Semiconductor Lasers and Laser Dynamics Ⅶ, Brussels, Belgium. 2016, 9892: 161-180.

[3] YANG X, LI M X, ZHAO G W, et al. Small-sized lithographic single-mode VCSELs with high-power conversion efficiency[C]//SPIE OPTO. Proc SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, San Francisco, California, USA. 2015, 9381: 197-202.

[4] SHI J W, CHI K L, CHANG J H, et al. Single-mode vertical-cavity surface-emitting laser array with high power and narrow far-field divergence angle[J]. IEEE Photonics Journal, 2013, 5(6): 1502508.

[5] SHIMADA R, MORKO H. Wide bandgap semiconductor-based surface-emitting lasers: recent progress in GaN-based vertical cavity surface-emitting lasers and GaN-/ZnO-based polariton lasers[J]. Proceedings of the IEEE, 2010, 98(7): 1220-1233.

[6] 许晓芳, 邓 军, 李建军, 等. 垂直腔面发射激光器DBR的生长优化[J]. 半导体光电, 2022, 43(2): 332-336.

[7] GEELS R S, CORZINE S W, SCOTT J W, et al. Low threshold planarized vertical-cavity surface-emitting lasers[J]. 1990: PD31.

[8] BASHIR B. Designing of high reflectance distributed Bragg reflectors (DBRs), mirrors using AlGaInN material system in the UV wavelength range[R]. University of Gavle, 2009.

[9] NAKADA N, NAKAJI M, ISHIKAWA H, et al. Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire[J]. Applied Physics Letters, 2000, 76(14): 1804-1806.

[10] LI P C, ZHANG Y T, CHEN L, et al. Optimization design and preparation of near ultraviolet AlGaN/GaN distributed Bragg reflectors[J]. Superlattices and Microstructures, 2018, 122: 661-666.

[11] LI P C, HAN X, YAN L, et al. The preparation of different pairs near-ultraviolet AlGaN/GaN DBRs with AlN interlayer[J]. Materials Science in Semiconductor Processing, 2018, 80: 162-166.

[12] MOUDAKIR T, GAUTIER S, SURESH S, et al. Suppression of crack generation in AlGaN/GaN distributed Bragg reflectors grown by MOVPE[J]. Journal of Crystal Growth, 2013, 370: 12-15.

[13] CARLIN J F, ILEGEMS M. High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN[J]. Applied Physics Letters, 2003, 83(4): 668-670.

[14] KURAMOTO M, KOBAYASHI S, AKAGI T, et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide[J]. Applied Physics Letters, 2018, 112(11): 111104.

[15] CHUNG R B, WU F, SHIVARAMAN R, et al. Growth study and impurity characterization of AlxIn1-x N grown by metal organic chemical vapor deposition[J]. Journal of Crystal Growth, 2011, 324(1): 163-167.

[16] 徐 峰. 应变补偿AlInGaN超晶格材料研究与在光电子器件中的应用[D]. 南京: 南京大学, 2017: 56-57.

[17] NISHINAKA J, FUNATO M, KIDO R, et al. InGaN/AlGaN stress compensated superlattices coherently grown on semipolar (1122) GaN substrates[J]. Physica Status Solidi (b), 2016, 253(1): 78-83.

[18] ANGERER H, BRUNNER D, FREUDENBERG F, et al. Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1-xN films[J]. Applied Physics Letters, 1997, 71(11): 1504-1506.

[19] 刘亚莹. InGaN/AlGaInN量子阱发光特性的研究[D]. 南京: 南京大学, 2018.

[20] VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

张君华, 贾志刚, 董海亮, 臧茂荣, 梁建, 许并社. AlGaInN/InGaN应变补偿DBR结构设计[J]. 人工晶体学报, 2023, 52(3): 452. ZHANG Junhua, JIA Zhigang, DONG Hailiang, ZANG Maorong, LIANG Jian, XU Bingshe. Design of AlGaInN/InGaN Strain-Compensation DBR Structure[J]. Journal of Synthetic Crystals, 2023, 52(3): 452.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!