激光与光电子学进展, 2023, 60 (1): 0100001, 网络出版: 2022-12-05  

光网络的通感一体化技术研究前沿 下载: 1224次封面文章

Research Frontier of Communication and Sensing Integration Technology for Optical Networks
作者单位
1 中国联合网络通信有限公司研究院,北京 100048
2 北京邮电大学信息光子学与光通信国家重点实验室,北京 100876
引用该论文

张传彪, 唐雄燕, 王光全, 张民, 沈世奎. 光网络的通感一体化技术研究前沿[J]. 激光与光电子学进展, 2023, 60(1): 0100001.

Chuanbiao Zhang, Xiongyan Tang, Guangquan Wang, Min Zhang, Shikui Shen. Research Frontier of Communication and Sensing Integration Technology for Optical Networks[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0100001.

参考文献

[1] Viswanathan H, Mogensen P E. Communications in the 6G era[J]. IEEE Access, 2020, 8: 57063-57074.

[2] di Taranto R, Muppirisetty S, Raulefs R, et al. Location-Aware Communications for 5G Networks: how location information can improve scalability, latency, and robustness of 5G[J]. IEEE Signal Processing Magazine, 2014, 31(6): 102-112.

[3] Heidari E, Gladisch A, Moshiri B, et al. Survey on location information services for Vehicular Communication Networks[J]. Wireless Networks, 2014, 20(5): 1085-1105.

[4] Amin M G, Zhang Y D, Ahmad F, et al. Radar signal processing for elderly fall detection: the future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71-80.

[5] Yang B, Cao X L, Xiong K, et al. Edge intelligence for autonomous driving in 6G wireless system: design challenges and solutions[J]. IEEE Wireless Communications, 2021, 28(2): 40-47.

[6] Mu J S, Gong Y, Zhang F P, et al. Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks[J]. IEEE Communications Letters, 2021, 25(10): 3301-3304.

[7] Cui Y H, Liu F, Jing X J, et al. Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158-167.

[8] He Q, Wang Z, Hu J B, et al. Performance gains from cooperative MIMO radar and MIMO communication systems[J]. IEEE Signal Processing Letters, 2019, 26(1): 194-198.

[9] Li B, Petropulu A P, Trappe W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562-4575.

[10] 苑立波, 童维军, 江山, 等. 我国光纤传感技术发展路线图[J]. 光学学报, 2022, 42(1): 0100001.

    Yuan L B, Tong W J, Jiang S, et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 2022, 42(1): 0100001.

[11] Yan Y X, Zheng H, Zhao Z Y, et al. Distributed optical fiber sensing assisted by optical communication techniques[J]. Journal of Lightwave Technology, 2021, 39(12): 3654-3670.

[12] Kapron F P, Maurer R D, Teter M P. Theory of backscattering effects in waveguides[J]. Applied Optics, 1972, 11(6): 1352-1356.

[13] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494.

[14] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115.

[15] Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9: 1328.

[16] Zhan Z W, Cantono M, Kamalov V, et al. Optical polarization-based seismic and water wave sensing on transoceanic cables[J]. Science, 2021, 371(6532): 931-936.

[17] Shim H K, Cho K Y, Takushima Y, et al. Correlation-based OTDR for in-service monitoring of 64-split TDM PON[J]. Optics Express, 2012, 20(5): 4921-4926.

[18] Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019, 37(17): 4359-4366.

[19] Cheng F, Chi B X, Lindsey N J, et al. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific Reports, 2021, 11: 5613.

[20] Marra G, Clivati C, Luckett R, et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 2018, 361(6401): 486-490.

[21] Hartog A H, Leach A P, Gold M P. Distributed temperature sensing in solid-core fibres[J]. Electronics Letters, 1985, 21(23): 1061-1062.

[22] Samson P J. Analysis of the wavelength dependence of Raman backscatter in optical fibre thermometry[J]. Electronics Letters, 1990, 26(3): 163-165.

[23] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

[24] Parker T R, Farhadiroushan M, Handerek V A, et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Optics Letters, 1997, 22(11): 787-789.

[25] Ohno H, Naruse H, Kihara M, et al. Industrial applications of the BOTDR optical fiber strain sensor[J]. Optical Fiber Technology, 2001, 7(1): 45-64.

[26] Maughan S M, Kee H H, Newson T P. 57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection[J]. Optics Letters, 2001, 26(6): 331-333.

[27] Ohno H, Naruse H, Yasue N, et al. Development of highly stable BOTDR strain sensor employing microwave heterodyne detection and tunable electric oscillator[J]. Proceedings of SPIE, 2001, 4596: 74-85.

[28] Koyamada Y, Sakairi Y, Takeuchi N, et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry[J]. IEEE Photonics Technology Letters, 2007, 19(23): 1910-1912.

[29] Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202.

[30] XiaT J, WellbrockG A, HuangM F, et al. First proof that geographic location on deployed fiber cable can Be determined by using OTDR distance based on distributed fiber optical sensing technology[C]‍∥2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA. New York: IEEE Press, 2020.

[31] Rad M M, Fouli K, Fathallah H A, et al. Passive optical network monitoring: challenges and requirements[J]. IEEE Communications Magazine, 2011, 49(2): S45-S52.

[32] Amaral G C, Garcia J D, Herrera L E Y, et al. Automatic fault detection in WDM-PON with tunable photon counting OTDR[J]. Journal of Lightwave Technology, 2015, 33(24): 5025-5031.

[33] de Mulder B, Chen W, Bauwelinck J, et al. Nonintrusive fiber monitoring of TDM optical networks[J]. Journal of Lightwave Technology, 2007, 25(1): 305-317.

[34] Zhang X, Ning N. A PON monitoring scheme for online fault detection and localization[J]. IEEE Photonics Journal, 2022, 14(3): 1-6.

[35] Iida D, Honda N, Izumita H, et al. Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks[J]. Journal of Lightwave Technology, 2007, 25(5): 1290-1297.

[36] Zhu M, Zhang S Y, Li G X, et al. Cost-effective fiber fault monitoring using MLMW-OOCs in high-capacity PONs considering user geographical distribution[J]. Computer Communications, 2019, 136: 1-9.

[37] LeeJ H, ChoiK M, MoonJ H, et al. A remotely reconfigurable PON architecture for efficient maintenance and protection[C]‍∥2009 Conference on Optical Fiber Communication, March 22-26, 2009, San Diego, CA, USA. New York: IEEE Press, 2009.

[38] Honda N, Iida D, Izumita H, et al. In-service line monitoring system in PONs using 1650-nm Brillouin OTDR and fibers with individually assigned BFSs[J]. Journal of Lightwave Technology, 2009, 27(20): 4575-4582.

[39] Awwad E, Dorize C, Guerrier S, et al. Detection-localization-identification of vibrations over long distance SSMF with coherent Δϕ‍-OTDR[J]. Journal of Lightwave Technology, 2020, 38(12): 3089-3095.

[40] Luch I D, Boffi P, Ferrario M, et al. Vibration sensing for deployed metropolitan fiber infrastructure[J]. Journal of Lightwave Technology, 2021, 39(4): 1204-1211.

[41] AonoY, IpE, JiP. More than communications: environment monitoring using existing optical fiber network infrastructure[C]‍∥Optical Fiber Communication Conference 2020, March 8-12, 2020, San Diego, California, USA. Washington, D.C.: OSA, 2020: W3G.1.

[42] DurairajanR, BarfordP, SommersJ, et al. InterTubes: a study of the US long-haul fiber-optic infrastructure[C]‍∥SIGCOMM'15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, August 17-21, 2015, London, UK. New York: ACM Press, 2015: 565-578.

[43] Huang M F, Salemi M, Chen Y H, et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network[J]. Journal of Lightwave Technology, 2020, 38(1): 75-81.

[44] WellbrockG A, XiaT J, HuangM F, et al. First field trial of sensing vehicle speed, density, and road conditions by using fiber carrying high speed data[C]‍∥2019 Optical Fiber Communications Conference and Exhibition (OFC), March 3-7, 2019, San Diego, CA, USA. New York: IEEE Press, 2019.

[45] Catalano E, Coscetta A, Cerri E, et al. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment[J]. Applied Optics, 2021, 60(13): 3579-3584.

[46] Ding Z W, Zhang X P, Zou N M, et al. Phi-OTDR based on-line monitoring of overhead power transmission line[J]. Journal of Lightwave Technology, 2021, 39(15): 5163-5169.

[47] Sun J X, Zhang Z G, Li Y M, et al. Distributed transmission line ice-coating recognition system based on BOTDR temperature monitoring[J]. Journal of Lightwave Technology, 2021, 39(12): 3967-3973.

[48] Charlton D, Clarke S, Doucet D, et al. Field measurements of SOP transients in OPGW, with time and location correlation to lightning strikes[J]. Optics Express, 2017, 25(9): 9689-9696.

[49] 王辰, 刘庆文, 陈典, 等. 基于分布式光纤声波传感的管道泄漏监测[J]. 光学学报, 2019, 39(10): 1006005.

    Wang C, Liu Q W, Chen D, et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 2019, 39(10): 1006005.

[50] Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 2016, 34(19): 4445-4453.

[51] Yin J, Li Z W, Liu Y, et al. Toward establishing a multiparameter approach for monitoring pipeline geohazards via accompanying telecommunications dark fiber[J]. Optical Fiber Technology, 2022, 68: 102765.

[52] 张旭苹, 丁哲文, 洪瑞, 等. 相位敏感光时域反射分布式光纤传感技术[J]. 光学学报, 2021, 41(1): 0106004.

    Zhang X, Ding Z, Hong R, et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 2021, 41(1): 0106004.

[53] 于淼, 张耀鲁, 何禹潼, 等. 变分模态分解-排列熵方法用于分布式光纤振动传感系统去噪[J]. 光学学报, 2022, 42(7): 0706005.

    Yu M, Zhang Y L, He Y T, et al. Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system[J]. Acta Optica Sinica, 2022, 42(7): 0706005.

[54] Sun Q, Feng H, Yan X Y, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 2015, 15(7): 15179-15197.

[55] Tejedor J, Macias-Guarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 2017, 17(2): 355.

[56] Lu Y L, Zhu T, Chen L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.

[57] Hall A, Chiu Y C, Selker J S. Coupling high-resolution monitoring and modelling to verify restoration-based temperature improvements[J]. River Research and Applications, 2020, 36(8): 1430-1441.

[58] Hall A, Selker J S. High-resolution temperature modeling of stream reconstruction alternatives[J]. River Research and Applications, 2021, 37(7): 931-942.

[59] Shanafield M, Banks E W, Arkwright J W, et al. Fiber-optic sensing for environmental applications: where we have come from and what is possible[J]. Water Resources Research, 2018, 54(11): 8552-8557.

[60] Selker J S, Thévenaz L, Huwald H, et al. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research, 2006, 42(12): 1-8.

[61] Lindsey N J, Martin E R, Dreger D S, et al. Fiber‐optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 2017, 44(23): 11792-11799.

[62] Jousset P, Reinsch T, Ryberg T, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 2018, 9: 2509.

[63] Li Z F, Shen Z C, Yang Y, et al. Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing[J]. AGU Advances, 2021, 2(2): e2021AV000395.

[64] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 2019, 366(6469): 1103-1107.

张传彪, 唐雄燕, 王光全, 张民, 沈世奎. 光网络的通感一体化技术研究前沿[J]. 激光与光电子学进展, 2023, 60(1): 0100001. Chuanbiao Zhang, Xiongyan Tang, Guangquan Wang, Min Zhang, Shikui Shen. Research Frontier of Communication and Sensing Integration Technology for Optical Networks[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0100001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!