人工晶体学报, 2023, 52 (3): 476, 网络出版: 2023-04-13  

退火时间及后退火对Cu2(CdxZn1-x)SnS4/CdS薄膜太阳电池性能影响的研究

Effect of Annealing Time and Post-Annealing on Performance of Cu2(CdxZn1-x)SnS4/CdS Thin Film Solar Cells
作者单位
1 金陵科技学院材料工程学院, 南京 211169
2 金陵科技学院理学院, 南京 211169
3 中国电子科技集团公司第二十八研究所, 南京 210007
4 2.金陵科技学院理学院, 南京 211169
摘要
Cu2ZnSnS4薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能, 受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu2(CdxZn1-x)SnS4(CCZTS)薄膜, 研究退火时间和后退火温度对薄膜及其太阳电池性能的影响。研究结果表明, 所制备的薄膜为CCZTS相, 无其他杂相, 薄膜表面平整且致密, 结晶性较好。随着退火时间增加, 薄膜的晶粒尺寸有所增大, 薄膜太阳电池的pn结质量得到提升, 其性能也随之提高。通过对薄膜太阳电池进行后退火处理, 分析了吸收层的元素扩散对电池性能的影响, 在Cd元素形成梯度分布时, 电池性能有所提高。随着后退火温度的增加, 其电池性能和pn结质量呈现先提高后下降的趋势。经后退火300 ℃处理后, 电池转换效率最佳, 为3.13%。
Abstract
Cu2ZnSnS4 thin films have attracted much attention due to their abundant elemental crust content, non-toxic and excellent photoelectric properties. In this paper, Cu2(CdxZn1-x)SnS4 (CCZTS) thin films were prepared by partially replacing Zn with Cd based on nano-ink method. The effects of annealing time and post-annealing temperature on the properties of the thin films and solar cells were studied. The results show that the prepared thin films are CCZTS phase without other heterogeneous phases, and the surface of thin films is flat and dense with good crystallinity. With the increase of annealing time, the grain size of thin film increases, the quality of pn junction of the thin film solar cells is improved, and performance of the solar cells is also improved. The effect of elemental diffusion in the absorber layer on the performance of solar cells after post-annealing was analyzed, and the performance of solar cell was improved when Cd elements formed a gradient distribution. With the increase of post-annealing temperature, both of the solar cell performance and pn junction quality first increase and then decrease. The solar cell conversion efficiency is optimal (3.13%) after 300 ℃ post-annealing treatment.
参考文献

[1] KUMAR A. Theoretical analysis of CZTS/CZTSSe tandem solar cell[J]. Optical and Quantum Electronics, 2021, 53(9): 528.

[2] VALLISREE S, SHARMA A, THANGAVEL R, et al. Investigations of carrier transport mechanism and junction formation in Si/CZTS dual absorber solar cell technology[J]. Applied Physics A, 2020, 126(3): 163.

[3] NWAMBAEKWE KELECHI C, SURU J D V, DOUMAN SAMANTHA F, et al. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell[J]. Journal of Materials Research and Technology, 2021, 12: 1252-1287.

[4] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials, 2013, 25(11): 1522-1539.

[5] TAGREROUT A, RACHED H, DRIEF M, et al. An extensive computational report on the quinary alloys Cu2Zn1-xCdxSnS4 for the solar cell systems: dft simulation[J]. Computational Condensed Matter, 2022, 31: e00670.

[6] PAYNO D, KAZIM S, AHMAD S. Impact of cation substitution in all solution-processed Cu2(Cd, Zn)SnS4 superstrate solar cells[J]. Journal of Materials Chemistry C, 2021, 9(48): 17392-17400.

[7] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials, 2015, 5(19): 1500682.

[8] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials, 2020, 32(32): 2000121.

[9] FU J, TIAN Q W, ZHOU Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials, 2016, 28(16): 5821-5828.

[10] COUREL M, MARTINEZ-AYALA A, SANCHEZ T G, et al. Impact of Cd concentrations on the physical properties of Cu2(CdxZn1-x)SnS4 thin films[J]. Superlattices and Microstructures, 2018, 122: 324-335.

[11] WANG W, BAI H, ZHI G W, et al. Preparation of Cu2CdxZn1-xSnS4 thin films by nanoparticle ink method[J]. Materials Research Express, 2021, 8(10): 106401.

[12] SHIN B, GUNAWAN O, ZHU Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4absorber[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72-76.

[13] WANG K, GUNAWAN O, TODOROV T, et al. Thermally evaporated Cu2ZnSnS4 solar cells[J]. Applied Physics Letters, 2010, 97(14): 143508.

[14] 张晓伟, 韩文浩, 徐玉刚, 等. 铜锌锡硫薄膜太阳电池研究综述[J]. 电源技术, 2017, 41(11): 1667-1670.

[15] KHALKAR A, LIM K S, YU S M, et al. Effect of growth parameters and annealing atmosphere on the properties of Cu2ZnSnS4thin films deposited by cosputtering[J]. International Journal of Photoenergy, 2013, 2013: 1-7.

[16] ASHFAQ A, JACOB J, BANO N, et al. A two step technique to remove the secondary phases in CZTS thin films grown by sol - gel method[J]. Ceramics International, 2019, 45(8): 10876-10881.

[17] ALTOWAIRQI Y, ALSUBAIE A, STROH K P, et al. The effect of annealing conditions: temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties[J]. Materials Today: Proceedings, 2019, 18: 473-486.

[18] SUN K L, YAN C, HUANG J L, et al. Minority lifetime and efficiency improvement for CZTS solar cells via Cd ion soaking and post treatment[J]. Journal of Alloys and Compounds, 2018, 750: 328-332.

[19] HWANG S K, PARK J H, CHEON K B, et al. Improved interfacial properties of electrodeposited Cu2ZnSn(S, Se)4 thin-film solar cells by a facile post-heat treatment process[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(12): 1345-1354.

[20] SCRAGG J J S, CHOUBRAC L, LAFOND A, et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films[J]. Applied Physics Letters, 2014, 104(4): 041911.

[21] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics, 2010, 107(1): 013516.

[22] 赵佳斌, 李晓亮, 王吉宁, 等. 共溅射法制备Zn元素梯度分布Cu2ZnSnS4薄膜[J]. 稀有金属, 2018, 42(12): 1281-1286.

[23] ZHAO Q C, SHEN H L, XU Y J, et al. Effect of CZTS/CCZTS stacked structures prepared through split-cycle on the performance of flexible solar cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3668-3676.

[24] WANG S J, HUANG L, YE Z, et al. Fabrication of high-efficiency Cu2(Zn, Cd)SnS4 solar cells by a rubidium fluoride assisted co-evaporation/annealing method[J]. Journal of Materials Chemistry A, 2021, 9(45): 25522-25530.

王佳文, 黄勇, 郑超凡, 王语灏, 王威, 毛梦洁. 退火时间及后退火对Cu2(CdxZn1-x)SnS4/CdS薄膜太阳电池性能影响的研究[J]. 人工晶体学报, 2023, 52(3): 476. WANG Jiawen, HUANG Yong, ZHENG Chaofan, WANG Yuhao, WANG Wei, MAO Mengjie. Effect of Annealing Time and Post-Annealing on Performance of Cu2(CdxZn1-x)SnS4/CdS Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(3): 476.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!