Advanced Photonics, 2021, 3 (5): 056002, Published Online: Oct. 26, 2021   

Active spintronic-metasurface terahertz emitters with tunable chirality Download: 557次

Author Affiliations
1 Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai, China
2 Shanghai Research Center for Quantum Sciences, Shanghai, China
Copy Citation Text

Changqin Liu, Shunjia Wang, Sheng Zhang, Qingnan Cai, Peng Wang, Chuanshan Tian, Lei Zhou, Yizheng Wu, Zhensheng Tao. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 2021, 3(5): 056002.


[1] B. Ferguson, X. Zhang. Materials for terahertz science and technology. Nat. Mater., 2002, 1(1): 26-33.

[2] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 2007, 1(2): 97-105.

[3] R. Ulbricht, et al.. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys., 2011, 83(2): 543-586.

[4] T. Kampfrath, K. Tanaka, K. A. Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics, 2013, 7(9): 680-690.

[5] M. Liu, et al.. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 2012, 487(7407): 345-348.

[6] S. Schlauderer, et al.. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature, 2019, 569(7756): 383-387.

[7] F. Langer, et al.. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature, 2016, 533(7602): 225-229.

[8] B. Zaks, R. B. Liu, M. S. Sherwin. Experimental observation of electron-hole recollisions. Nature, 2012, 483(7391): 580-583.

[9] J. Reimann, et al.. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature, 2018, 562(7727): 396-400.

[10] Q. Su, et al.. Control of terahertz pulse polarization by two crossing DC fields during femtosecond laser filamentation in air. J. Opt. Soc. Am. B, 2019, 36(10): G1-G5.

[11] W. M. Wang, et al.. Tunable circularly polarized terahertz radiation from magnetized gas plasma. Phys. Rev. Lett., 2015, 114(25): 253901.

[12] X. Lu, X. C. Zhang. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes. Phys. Rev. Lett., 2012, 108(12): 123903.

[13] A. Houard, et al.. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett., 2008, 100(25): 255006.

[14] J. Dai, N. Karpowicz, X. C. Zhang. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett., 2009, 103(2): 023001.

[15] Z. Zhang, et al.. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat. Photonics, 2018, 12(9): 554-559.

[16] N. Amer, et al.. Generation of terahertz pulses with arbitrary elliptical polarization. Appl. Phys. Lett., 2005, 87(22): 221111.

[17] M. Sato, et al.. Terahertz polarization pulse shaping with arbitrary field control. Nat. Photonics, 2013, 7(9): 724-731.

[18] N. Kanda, et al.. The vectorial control of magnetization by light. Nat. Commun., 2011, 2: 362.

[19] H. Zhao, et al.. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photonics, 2020, 2(6): 066003.

[20] Y. Gao, et al.. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun., 2020, 11(1): 720.

[21] A. Ferrar, et al.. Flexible terahertz wire grid polarizer with high extinction ratio and low loss. Opt. Lett., 2016, 41(9): 2009-2012.

[22] J. Shan, J. I. Dadap, T. F. Heinz. Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization. Opt. Express, 2009, 17(9): 7431-7439.

[23] J. Masson, G. Gallot. Terahertz achromatic quarter-wave plate. Opt. Lett., 2006, 31(2): 265-267.

[24] X. Cai, et al.. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 2021, 3(3): 036003.

[25] L. Cong, et al.. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl., 2018, 7(1): 28.

[26] N. K. Grady, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304-1307.

[27] M. Jia, et al.. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl., 2019, 8(1): 16.

[28] T. T. Kim, et al.. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv., 2017, 3(9): e1701377.

[29] M. Liu, et al.. Temperature-controlled optical activity and negative refractive index. Adv. Funct. Mater., 2021, 31(14): 2010249.

[30] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780-1782.

[31] H.-H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064.

[32] Q. He, et al.. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 2018, 6(19): 1800415.

[33] L. Luo, et al.. Broadband terahertz generation from metamaterials. Nat. Commun., 2014, 5(1): 3055.

[34] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2017, 2: 17010.

[35] C. McDonnell, et al.. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat. Commun., 2021, 12: 30.

[36] T. Seifert, et al.. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 2016, 10(7): 483-488.

[37] T. Kampfrath, et al.. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 2013, 8(4): 256-260.

[38] D. Yang, et al.. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Adv. Opt. Mater., 2016, 4(12): 1944-1949.

[39] Y. Wu, et al.. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater., 2017, 29(4): 1603031.

[40] G. Torosyan, et al.. Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci. Rep., 2018, 8(1): 1311.

[41] M. Chen, et al.. Current-enhanced broadband THz emission from spintronic devices. Adv. Opt. Mater., 2019, 7(4): 1801608.

[42] T. Seifert, et al.. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm-1 from a metallic spintronic emitter. Appl. Phys. Lett., 2017, 110(25): 252402.

[43] S. Zhang, et al.. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl., 2021, 10(1): 53.

[44] P. C. M. Planken, et al.. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B, 2001, 18(3): 313-317.

[45] Q. Wu, X. C. Zhang. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett., 1995, 67(24): 3523-3525.

[46] A. Leitenstorfer, et al.. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett., 1999, 74(11): 1516-1518.

[47] Z. Jin, et al.. Terahertz radiation modulated by confinement of picosecond current based on patterned ferromagnetic heterostructures. Phys. Status Solidi, 2019, 13(9): 1900057.

[48] L. Nadvorník, et al.. Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions. Phys. Rev. X, 2020, 11: 021031.

[49] COMSOL, .

[50] P. Antoine, et al.. Polarization of high-order harmonics. Phys. Rev. A, 1997, 55(2): 1314-1324.

[51] A. Fleischer, et al.. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics, 2014, 8(7): 543-549.

[52] E. D.Palik, Handbook of Optical Constants of Solids, Vol. 3, Academic Press, Cambridge, Massachusetts (1998).

[53] F. Liu, X. Zhang. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications. Biosens. Bioelectron., 2015, 68: 719-725.

[54] S. Savoia, et al.. Surface sensitivity of Rayleigh anomalies in metallic nanogratings. Opt. Express, 2013, 21(20): 23531-23542.

[55] D. Kong, et al.. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv. Opt. Mater., 2019, 7(20): 1900487.

[56] T. S. Seifert, et al.. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. J. Phys. D., 2018, 51(36): 364003.

Changqin Liu, Shunjia Wang, Sheng Zhang, Qingnan Cai, Peng Wang, Chuanshan Tian, Lei Zhou, Yizheng Wu, Zhensheng Tao. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 2021, 3(5): 056002.

本文已被 3 篇论文引用
引用该论文: TXT   |   EndNote



关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。