人工晶体学报, 2023, 52 (3): 442, 网络出版: 2023-04-13  

单晶金刚石声子非简谐衰减效应研究

Anharmonic Phonon Decay Effect of Single Crystal Diamond
作者单位
1 山东大学新一代半导体材料研究院, 济南 250100
2 山东大学晶体材料国家重点实验室, 济南 250100
3 专用集成电路国家级重点实验室, 石家庄 050051
4 中国电子科技集团公司第十三研究所, 石家庄 050051
摘要
随着金刚石作为散热材料在大功率半导体器件、激光器、微波器件和大规模集成电路等领域中的应用愈加广泛, 通过对金刚石局部进行精确测温以评价其散热性能是一个重要的研究课题。本文使用拉曼光谱仪对不同掺杂类型的高温高压(HTHP)样品和化学气相沉积(CVD)样品在228~678 K进行检测, 得到了金刚石样品TO模拉曼峰位、半峰全宽等与温度的一一对应关系, 并通过理论计算模型明确了热膨胀、三声子、四声子随温度变化对拉曼峰位、半峰全宽的贡献。理论和实验测试结果发现: 不同掺杂以及不同类型样品的拉曼光谱峰位无明显区别; 随温度升高, 半峰全宽宽化, 主要影响因素为声子衰减导致的非简谐效应, 同时受载流子的电离率、浓度、类型, 以及缺陷和杂质影响; 声子寿命主要受到声子的非简谐衰减作用影响, 基本不受杂质散射的影响。本研究为金刚石材料的温度检测提供了一种无损、非接触、高空间分辨率的方法。
Abstract
As a promising heat dissipation material, diamond is wildly used in high power semiconductor devices, lasers, microwave devices and large-scale integrated circuit fields. The accurate local temperature measurement of diamond to evaluate its heat dissipation performance has become an important research topic. In this paper, Raman spectroscopy was employed to investigate the Raman spectra (TO mode) characteristics of diamond in the temperature range of 228 to 678 K. The one-to-one correspondence between Raman peak position, full width at half maximum (FWHM) and temperature of different doped diamond samples was established. The contributions of thermal expansion, three phonons and four phonons to Raman peak position at variable temperatures were analyzed by theoretical model calculation. The results show that there is no significant difference among the Raman spectra of different doped samples of HTHP and CVD. With the increase of temperature, the FWHM broadens. It is considered that the anharmonic effect caused by phonon attenuation is the determining factor, while the ionization rate, concentration and type of carriers, defects and impurities contribute partial influence. Meanwhile, the phonon lifetime is mainly affected by the anharmonic attenuation of phonons, and appears largely unaffected by impurity scattering. This study shed light on a non-destructive, non-contact, high spatial resolution method to the temperature measurement for diamond materials.
参考文献

[1] SUGANUMA K. Wide Bandgap power semiconductor packaging: materials, components, and reliability[M]. Duxford, United Kingdom: Woodhead Publishing is an imprint of Elsevier, 2018

[2] MITTAL A. Energy efficiency enabled by power electronics[C]//2010 International Electron Devices Meeting. December 6-8, 2010, San Francisco, CA, USA. IEEE, 2011: 1.2.1-1.2.7.

[3] OHASHI H. Power devices now and future, strategy of Japan[C]//2012 24th International Symposium on Power Semiconductor Devices and ICs. June 3-7, 2012, Bruges, Belgium. IEEE, 2012: 9-12.

[4] BOLOTNIKOV A, LOSEE P, MATOCHA K, et al. 3.3kV SiC MOSFETs designed for low on-resistance and fast switching[C]//2012 24th International Symposium on Power Semiconductor Devices and ICs. June 3-7, 2012, Bruges, Belgium. IEEE, 2012: 389-392.

[5] DUSSAIGNE A, GONSCHOREK M, MALINVERNI M, et al. High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate[J]. Japanese Journal of Applied Physics, 2010, 49(6): 061001.

[6] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electronics Letters, 2010, 46(4): 299.

[7] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767.

[8] 顾长志, 金曾孙, 吕宪义, 等. 使用金刚石膜热沉的半导体激光器特性研究[J]. 半导体学报, 1997, 18(11): 840-843.

[9] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664.

[10] 戴 玮, 李嘉强, 曹 剑, 等. CVD金刚石热沉封装高功率半导体激光器的热特性[J]. 光电子·激光, 2019, 30(3): 227-233.

[11] VISSER E P, VERSTEEGEN E H, VAN ENCKEVORT W J P. Measurement of thermal diffusion in thin films using a modulated laser technique: application to chemical-vapor-deposited diamond films[J]. Journal of Applied Physics, 1992, 71(7): 3238-3248.

[12] GRAEBNER J E, RALCHENKO V G, SMOLIN A A, et al. Thermal conductivity of thin diamond films grown from d.c. discharge[J]. Diamond and Related Materials, 1996, 5(6/7/8): 693-698.

[13] GAAL P S, THERMITUS M A, STROE D E. Thermal conductivity measurements using the flash method[J]. Journal of Thermal Analysis and Calorimetry, 2004, 78(1): 185-189.

[14] BHARDWAJ R G, KHARE N. Review: 3-ω technique for thermal conductivity measurement-contemporary and advancement in its methodology[J].International Journal of Thermophysics, 2022, 43(9): 1-32.

[15] CHERNYKH M Y, ANDREEV A A, EZUBCHENKO I S, et al. GaN-based heterostructures with CVD diamond heat sinks: a new fabrication approach towards efficient electronic devices[J]. Applied Materials Today, 2022, 26: 101338.

[16] PRICHON S, LYSENKO V, REMAKI B, et al. Measurement of porous silicon thermal conductivity by micro-Raman scattering[J]. Journal of Applied Physics, 1999, 86(8): 4700-4702.

[17] ALERS P, HINTERMANN H E, HAYWARD I. Correlations between Raman scattering and thermal expansion behavior for CVD and natural diamond[J]. Thin Solid Films, 1995, 259(1): 14-17.

[18] HERCHEN H, CAPPELLI M A. First-order Raman spectrum of diamond at high temperatures[J]. Physical Review B, Condensed Matter, 1991, 43(14): 11740-11744.

[19] GRIMSDITCH M, ZOUBOULIS E S, POLIAN A. Elastic constants of boron nitride[J]. Journal of Applied Physics, 1994, 76(2): 832-834.

[20] SOLIN S A, RAMDAS A K. Raman spectrum of diamond[J]. Physical Review B, 1970, 1(4): 1687-1698.

[21] CUI J B, AMTMANN K, RISTEIN J, et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy[J]. Journal of Applied Physics, 1998, 83(12): 7929-7933.

[22] KONG J F, YE H B, ZHANG D M, et al. Temperature-dependent Raman scattering in N-In codoped p-type ZnO thin films[J]. Journal of Physics D: Applied Physics, 2007, 40(23): 7471-7474.

[23] TANG H, HERMAN I P. Raman microprobe scattering of solid silicon and germanium at the melting temperature[J]. Physical Review B, Condensed Matter, 1991, 43(3): 2299-2304.

[24] BORER W J, MITRA S S, NAMJOSHI K V. Line shape and temperature dependence of the first order Raman spectrum of diamond[J]. Solid State Communications, 1971, 9(16): 1377-1381.

[25] HARUNA K, MAETA H, OHASHI K, et al. Thermal expansion coefficient of synthetic diamond single crystal at low temperatures[J]. Japanese Journal of Applied Physics, 1992, 31(8R): 2527.

[26] SUROVTSEV N V, KUPRIYANOV I N. Temperature dependence of the Raman line width in diamond: revisited[J]. Journal of Raman Spectroscopy, 2015, 46(1): 171-176.

[27] LI W S, SHEN Z X, FENG Z C, et al. Temperature dependence of Raman scattering in hexagonal gallium nitride films[J]. Journal of Applied Physics, 2000, 87(7): 3332-3337.

[28] BERGMAN L, ALEXSON D, MURPHY P L, et al. Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure[J]. Physical Review B, 1999, 59(20): 12977-12982.

[29] BEECHEM T, GRAHAM S. Temperature and doping dependence of phonon lifetimes and decay pathways in GaN[J]. Journal of Applied Physics, 2008, 103(9): 093507.

李斌, 胡秀飞, 杨旖秋, 王英楠, 谢雪健, 彭燕, 杨祥龙, 王希玮, 胡小波, 徐现刚, 冯志红. 单晶金刚石声子非简谐衰减效应研究[J]. 人工晶体学报, 2023, 52(3): 442. 李斌, 胡秀飞, 杨旖秋, 王英楠, 谢雪健, 彭燕, 杨祥龙, 王希玮, 胡小波, 徐现刚, 冯志红. Anharmonic Phonon Decay Effect of Single Crystal Diamond[J]. Journal of Synthetic Crystals, 2023, 52(3): 442.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!