人工晶体学报, 2023, 52 (3): 526, 网络出版: 2023-04-13  

水热釜填充度与溶液pH值对水热法制备钙磷涂层的影响

Effects of Filling Condition and pH Value on the Calcium-Phosphate Coatings Prepared via Hydrothermal Method
作者单位
1 上海理工大学材料与化学学院, 上海 200093
2 莫纳什大学材料科学与工程系, 克莱顿 3800
摘要
本文以CaCl2与KH2PO4为原料, Na2EDTA·2H2O为螯合剂, 通过NH3·H2O调节溶液pH值, 系统研究了水热釜填充度(16%~64%)与溶液pH值(3.5~6.0)对水热法制备钛表面钙磷涂层形貌和物相的影响。结果表明: 当pH值为3.5和4.0时, 涂层在所研究填充度的范围内主要为三斜结构(P1)的板块状磷酸氢钙(DCPA); 当pH值为4.5和5.0时, 低填充度有利于形成六方结构(P63/m)的蒲公英状羟基磷灰石(HAP), 并随填充度的提高, 涂层由蒲公英状HAP逐渐转变为板块状DCPA; 当pH值为5.5和6.0时, 涂层在所研究填充度的范围内主要为蒲公英状HAP, HAP的结晶度随填充度的提高逐渐增加, 而随pH值的升高蒲公英状HAP的直径逐渐减小。另外, 本文获得的单相HAP涂层、单相DCPA涂层和(HAP+DCPA)两相混合涂层的润湿性均显著优于钛表面, 这将有助于植体的骨整合。同时, 本文也探究了不同钙磷涂层的反应机理。
Abstract
In this paper, CaCl2 and KH2PO4 were used as raw materials, Na2EDTA·2H2O as chelating agent, and NH3·H2O was used to adjust pH value of the solution, the calcium-phosphate coatings on titanium substrate were prepared via hydrothermal method, and the effects of filling condition (FC) (16%~64%) and pH value (3.5~6.0) on morphology and phase constitutions of the coatings were systematically investigated. The results show that: when the pH value is 3.5 and 4.0, the coatings are mainly platelet-like calcium hydrogen phosphate (DCPA) (P1) at different FC, and FC has no remarkable effect on phase constitution of the coatings; when the pH value is 4.5 and 5.0, dandelion-like hydroxyapatite (HAP) (P63/m) are easily found at lower FC, and with the increase of FC, the coating changes from dandelion-like HAP to platelet-like DCPA; when the pH value is of 5.5 and 6.0, the coatings are mainly dandelion-like HAP at different FC, and with the increase of FC, the crystallinity of HAP increases, while with the increase of pH value, the diameter of dandelion-like HAP decreases. Otherwise, the wettability of the three typical coatings (i.e., the dandelion-like HAP, the platelet-like DCPA, and the mix of (HAP+DCPA)) show much better wettability than the titanium substrate, this indicates that the calcium-phosphate coatings would benefit the future osseointegration. Meanwhile, the formation mechanisms of different kinds of coatings were discussed.
参考文献

[1] ULUSALOGˇLU A C, ATICI T, ERMUTLU C, et al. Evaluation of titanium release from titanium alloy implants in patients with spinal instrumentation[J]. The Journal of International Medical Research, 2021, 49(1): 300060520984931.

[2] WANG H, ZHAO B J, LIU C K, et al. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting[J]. PLoS One, 2016, 11(7): e0158513.

[3] PLEKHOVA N G, LYAPUN I N, DROBOT E I, et al. Functional state of mesenchymal stem cells upon exposure to bioactive coatings on titanium alloys[J]. Bulletin of Experimental Biology and Medicine, 2020, 169(1): 147-156.

[4] GNEDENKOV S V, SINEBRYUKHOV S L, PUZ A V, et al. In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy Ti-6Al-4V[J]. Bio-Medical Materials and Engineering, 2016, 27(6): 551-560.

[5] RIAL R, GONZLEZ-DURRUTHY M, LIU Z, et al. Advanced materials based on nanosized hydroxyapatite[J]. Molecules, 2021, 26(11): 3190.

[6] WANG H N, LI Y B, ZUO Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(22): 3338-3348.

[7] SIMA F, SOCOL G, AXENTE E, et al. Biocompatible and bioactive coatings of Mn2+-doped β-tricalcium phosphate synthesized by pulsed laser deposition[J]. Applied Surface Science, 2007, 254(4): 1155-1159.

[8] PETRAKOVA N V, TETERINA A Y, MIKHEEVA P V, et al. In vitro study of octacalcium phosphate behavior in different model solutions[J]. ACS Omega, 2021, 6(11): 7487-7498.

[9] ORYAN A, ALIDADI S, BIGHAM-SADEGH A. Dicalcium phosphate anhydrous: an appropriate bioceramic in regeneration of critical-sized radial bone defects in rats[J]. Calcified Tissue International, 2017, 101(5): 530-544.

[10] ZHANG Y X, LIN T, MENG H Y, et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo[J]. Journal of Orthopaedic Translation, 2022, 33: 13-23.

[11] WENG W J, BAPTISTA J L. Sol-gel derived porous hydroxyapatite coatings[J]. Journal of Materials Science: Materials in Medicine, 1998, 9(3): 159-163.

[12] WANG J, CHAO Y L, WAN Q B, et al. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition[J]. Acta Biomaterialia, 2009, 5(5): 1798-1807.

[13] DYSHLOVENKO S, PAWLOWSKI L, PATEYRON B, et al. Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite[J]. Surface and Coatings Technology, 2006, 200(12/13): 3757-3769.

[14] BOCCACCINI A R, KEIM S, MA R, et al. Electrophoretic deposition of biomaterials[J]. Journal of the Royal Society, Interface, 2010, 7(5): S581-S613.

[15] WU Y S, CHANG W K, JOU M. Hydroxyapatite synthesised from nanosized calcium carbonate via hydrothermal method[J]. Materials Technology, 2012, 27(1): 119-123.

[16] LIU D X, SAVINO K, YATES M Z. Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition[J]. Surface and Coatings Technology, 2011, 205(16): 3975-3986.

[17] YOU J C, WU S Q, ZHAO C Q, et al. Morphological evolution and bonding strength of a monetite coating on the Ti-6Al-4V substrate via hydrothermal treatment[J]. Materials Technology, 2022, 37(8): 849-857.

[18] ARCE H, MONTERO M L, SENZ A, et al. Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex[J]. Polyhedron, 2004, 23(11): 1897-1901.

[19] SCHWARTZ Z, BOYAN B D. Underlying mechanisms at the bone-biomaterial interface[J]. Journal of Cellular Biochemistry, 1994, 56(3): 340-347.

[20] NAKAMURA M, HORI N, ANDO H, et al. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability[J]. Materials Science and Engineering: C, 2016, 62: 283-292.

[21] SU Y Y, LI K Z, ZHANG L L, et al. Calcium phosphorus bio-coating on carbon/carbon composites: preparation, shear strength and bioactivity[J]. Applied Surface Science, 2017, 419: 503-511.

[22] XU L P, PAN F, YU G N, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy[J]. Biomaterials, 2009, 30(8): 1512-1523.

[23] NISHIMURA T, OGINO Y, AYUKAWA Y, et al. Influence of the wettability of different titanium surface topographies on initial cellular behavior[J]. Dental Materials Journal, 2018, 37(4): 650-658.

[24] ADVINCULA M C, RAHEMTULLA F G, ADVINCULA R C, et al. Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J]. Biomaterials, 2006, 27(10): 2201-2212.

[25] LI Q Q, BAO X G, SUN J E, et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science, 2021, 56(8): 5233-5249.

[26] SASIKUMAR Y, KUMAR A M, BABU R S, et al. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(8): 123.

[27] ZHU R H, YU R B, YAO J X, et al. Morphology control of hydroxyapatite through hydrothermal process[J]. Journal of Alloys and Compounds, 2008, 457(1/2): 555-559.

[28] ZOU Z Y, LIU X G, CHEN L, et al. Dental enamel-like hydroxyapatite transformed directly from monetite[J]. Journal of Materials Chemistry, 2012, 22(42): 22637-22641.

[29] HAM D, KANG H C. Characterization of dicalcium phosphate anhydrous crystals synthesized by using a hydrothermal process[J]. Journal of the Korean Physical Society, 2020, 76(11): 971-975.

[30] HE D H, DU J, LIU P, et al. Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface[J]. Surface and Coatings Technology, 2019, 365: 242-247.

[31] LAK A, MAZLOUMI M, MOHAJERANI M, et al. Self-assembly of dandelion-like hydroxyapatite nanostructures via hydrothermal method[J]. Journal of the American Ceramic Society, 2008, 91(10): 3292-3297.

[32] HILBERT R, TDHEIDE K, FRANCK E U. PVT data for water in the ranges 20 to 600 ℃ and 100 to 4000 bar[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1981, 85(9): 636-643.

[33] MARSHALL W L, FRANCK E U. Ion product of water substance, 0-1 000 ℃, 1-10, 000 bars new international formulation and its background[J]. Journal of Physical and Chemical Reference Data, 1981, 10(2): 295-304.

邹梓杨, 吴松全, 杨义, 王皞, 黄爱军. 水热釜填充度与溶液pH值对水热法制备钙磷涂层的影响[J]. 人工晶体学报, 2023, 52(3): 526. ZOU Ziyang, WU Songquan, YANG Yi, WANG Hao, HUANG Aijun. Effects of Filling Condition and pH Value on the Calcium-Phosphate Coatings Prepared via Hydrothermal Method[J]. Journal of Synthetic Crystals, 2023, 52(3): 526.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!