Photonics Research, 2020, 8 (2): 02000211, Published Online: Feb. 10, 2020  

Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes Download: 507次

Author Affiliations
1 Photonics Research Group, Department of Information Technology, Ghent University-IMEC, 9052 Ghent, Belgium
2 Center of Nano and Biophotonics, Ghent University, 9052 Ghent, Belgium
Copy Citation Text

Iman Zand, Wim Bogaerts. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes[J]. Photonics Research, 2020, 8(2): 02000211.

References

[1] L. Chen, E. Hall, L. Theogarajan, J. Bowers. Photonic switching for data center applications. IEEE Photon. J., 2011, 3: 834-844.

[2] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2015, 2: 854-859.

[3] RibeiroA.RuoccoA.VanackerL.BogaertsW., “Demonstration of a 4 × 4-port self-configuring universal linear optical component,” in Progress in Electromagnetics Research Symposium (PIERS) (2016), Vol. 3, pp. 33723375.

[4] D. A. Miller. Silicon photonics: meshing optics with applications. Nat. Photonics, 2017, 11: 403-404.

[5] A. Annoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. Miller, A. Melloni, F. Morichetti. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl., 2017, 6: e17110.

[6] D. Pérez, I. Gasulla, J. Capmany. Toward programmable microwave photonics processors. J. Lightwave Technol., 2018, 36: 519-532.

[7] A. Peruzzo, A. Laing, A. Politi, T. Rudolph, J. L. O’Brien. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun., 2011, 2: 224.

[8] B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. M. Jin, M. Barbieri, W. Steven Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. Smith, I. A. Walmsley. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun., 2013, 4: 1356.

[9] D. A. B. Miller. Self-aligning universal beam coupler. Opt. Express, 2013, 21: 6360-6370.

[10] D. A. B. Miller. Self-configuring universal linear optical component (Invited). Photon. Res., 2013, 1: 1-15.

[11] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, A. Laing. Universal linear optics. Science, 2015, 349: 711-716.

[12] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2015, 2: 747-750.

[13] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, D. Englund. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 2017, 11: 447-452.

[14] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 1994, 73: 58-61.

[15] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, D. Englund. Linear programmable nanophotonic processors. Optica, 2018, 5: 1623-1631.

[16] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walsmley. Optimal design for universal multiport interferometers. Optica, 2016, 3: 1460-1465.

[17] D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Silicon photonics rectangular universal interferometer. Laser Photon. Rev., 2017, 11: 1700219.

[18] S. Pai, B. Bartlett, O. Solgaard, D. A. Miller. Matrix optimization on universal unitary photonic devices. Phys. Rev. Appl., 2019, 11: 064044.

[19] D. Pérez, I. Gasulla, J. Capmany, R. A. Soref. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express, 2016, 24: 12093-12106.

[20] D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 2017, 8: 636.

[21] D. Pérez, I. Gasulla, J. Capmany. Programmable multifunctional integrated nanophotonics. Nanophotonics, 2018, 7: 1351-1371.

[22] D. Pérez, J. Capmany. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 2019, 6: 19-27.

[23] A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, W. Bogaerts. Backscattering in silicon microring resonators: a quantitative analysis. Laser Photon. Rev., 2016, 10: 420-431.

[24] BogaertsW.FiersM.SivilottiM.DumonP., “The IPKISS photonic design framework,” in Optical Fiber Communications Conference and Exhibition (OFC) (2016), pp. 13.

[25] F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 292-301.

[26] D. Oliveira, M. D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, G. Ferrari, M. Sampietro, F. Morichetti, A. Melloni. Automatic tuning of silicon photonics microring filter array for hitless reconfigurable add–drop. J. Lightwave Technol., 2019, 37: 3939-3947.

Iman Zand, Wim Bogaerts. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes[J]. Photonics Research, 2020, 8(2): 02000211.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!