中国激光, 2016, 43 (6): 0609002, 网络出版: 2016-06-06   

基于光强传输方程的非干涉相位恢复与定量相位显微成像:文献综述与最新进展 下载: 2819次

Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of Intensity Equation: A Review
作者单位
1 南京理工大学电子工程与光电技术学院智能计算成像实验室, 江苏 南京 210094
2 南京理工大学江苏省光谱成像与智能感知重点实验室, 江苏 南京 210094
3 南洋理工大学机械与航空航天工程学院, 新加坡 639798
摘要
相位恢复与定量相位成像是光学测量与成像技术领域的一个重要课题。传统干涉测量法依赖高度相干光源的干涉叠加,干涉装置复杂,测量环境要求苛刻,引入的散斑噪声极大地限制了传统干涉测量法在显微成像领域的应用。光强传输方程(TIE)作为最具代表性的相位恢复方法之一,为定量相位成像提供了一种新的非干涉手段。近些年来,该方法在国内外得到广泛研究与关注,发展迅速,成果显著,在自适应光学、X射线衍射光学、电子显微学、光学显微成像等领域展现了巨大的应用潜力。从光强传输方程的基本原理、方程求解、光强轴向微分的差分估计、部分相干成像与光场成像等几方面综述了光强传输方程在光学成像领域,特别是定量相位显微成像领域的研究现状与最新进展,并针对现存问题以及今后的研究方向提出了建议。
Abstract
Phase retrieval and quantitative phase imaging are central subjects in optical measuring and imaging technologies. The most well-established method for obtaining quantitative phase is through interferometry. However, this class of methods relies heavily on the superposition of two beams with a high degree of coherence, and complex interferometric device, stringent requirement on the environmental stability, and associated laser speckle noise greatly limit its applications in the field of microscopic imaging. On a different note, as one of the typical phase retrieval approaches, the transport of intensity equation (TIE) provides a new non-interferometric way to access the quantitative phase information. In recent years, it has been extensively studied and remarkable advancements have been made in the fields of adaptive optics, X-ray diffraction imaging, electron microscopy, and optical microscopy. In this work, we will review the basic principles and some recent advances in TIE phase retrieval, including its solutions, axial intensity derivative estimation, partially coherent imaging and light field imaging, with emphasis on its applications in the field of quantitative phase microscopy. The challenging problems as well as future research directions will also be discussed.
参考文献

[1] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 1982, 217(4566): 1252-1255.

[2] Wilson T. Confocal microscopy[M]. London: Academic Press, 1990: 1-64.

[3] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.

[4] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16: 9s-13s.

[5] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

[6] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

[7] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070-4075.

[8] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85.

[9] Schnars U, Jueptner W. Digital holography[M]. Heidelberg: Springer Berlin Heidelberg, 2005.

[10] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen (in Germany)[J]. Z Instrumentenkd, 1900, 20: 47-58.

[11] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.

[12] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 1971, 61: 656.

[13] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237.

[14] Gerchberg R W, Saxton W. Phase determination from image and diffraction plane pictures in electron-microscope[J]. Optik, 1971, 34(3): 275-283.

[15] Eisebitt S, Lüning J, Schlotter W, et al.. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

[16] Marchesini S, He H, Chapman H N, et al.. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 140101.

[17] Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]. Proceedings of the 23rd Annual Technical Symposium, International Society for Optics and Photonics, 1979: 32-39.

[18] Guyon O. Limits of adaptive optics for high-contrast imaging[J]. The Astrophysical Journal, 2005, 629(1): 592.

[19] Zuo J M, Vartanyants I, Gao M, et al.. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419-1421.

[20] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.

[21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

[22] Fienup J, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907.

[23] Lu G, Zhang Z, Francis T S, et al.. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Optical Engineering, 1994, 33(2): 548-555.

[24] Misell D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D, 1973, 6(1): L6.

[25] Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 2007, 75(4): 043805.

[26] Bao P, Zhang F, Pedrini G, et al.. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309-311.

[27] Anand A, Pedrini G, Osten W, et al.. Wavefront sensing with random amplitude mask and phase retrieval[J]. Optics Letters, 2007, 32(11): 1584-1586.

[28] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[29] Waller L. Phase imaging with partially coherent light[C]. SPIE, 2013, 8589: 85890K.

[30] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

[31] Thibault P, Dierolf M, Menzel A, et al.. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.

[32] Thibault P, Dierolf M, Bunk O, et al.. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

[33] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.

[34] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

[35] Maiden A M, Humphry M J, Sarahan M C, et al.. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

[36] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

[37] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.

[38] Maiden A M, Humphry M J, Zhang F, et al.. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

[39] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

[40] 郑晨, 何小亮, 刘诚, 等. 关于轴向距离误差对PIE成像质量影响的研究[J]. 光学学报, 2014, 34(10): 1011003.

    Zheng Chen, He Xiaoliang, Liu Cheng, et al.. A study on the influence of the axial distance error to the image quality of the ptychographic iterative engine[J]. Acta Optica Sinica, 2014, 34(10): 1011003.

[41] 王宝升, 高淑梅, 王继成, 等. 电荷耦合器件饱和效应对PIE成像质量的影响[J]. 光学学报, 2013, 33(6): 0611001.

    Wang Baosheng, Gao Shumei, Wang Jicheng, et al.. Influence of charge coupled device saturation on PIE imaging[J]. Acta Optica Sinica, 2013, 33(6): 0611001.

[42] 王雅丽, 史祎诗, 李拓, 等. 可见光域叠层成像中照明光束的关键参量研究[J]. 物理学报, 2013, 62(6): 064206.

    Wang Yali, Shi Yishi, Li Tuo, et al.. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band[J]. Acta Physica Sinica, 2013, 62(6): 064206.

[43] Teague M R. Deterministic phase retrieval: A Green′s function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[44] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586-2589.

[45] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s functions[J]. Journal of the Optical Society of America A, 2010, 27(10): 2244-2251.

[46] Semichaevsky A, Testorf M. Phase-space interpretation of deterministic phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(11): 2173-2179.

[47] Almoro P F, Waller L, Agour M, et al.. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088-2090.

[48] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. Journal of the Optical Society of America A, 1995, 12(9): 1942-1946.

[49] Sheppard C J R. Defocused transfer function for a partially coherent microscope and application to phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(5): 828-831.

[50] Nugent K A, Gureyev T E, Cookson D F, et al.. Quantitative phase imaging using hard X rays[J]. Physical Review Letters, 1996, 77(14): 2961-2964.

[51] Barty A, Nugent K A, Paganin D, et al.. Quantitative optical phase microscopy[J]. Optics Letters, 1998, 23(11): 817-819.

[52] Kou S S, Waller L, Barbastathis G, et al.. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447-449.

[53] Waller L, Kou S S, Sheppard C J R, et al.. Phase from chromatic aberrations[J]. Optics Express, 2010, 18(22): 22817-22825.

[54] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4): 707-709.

[55] Roddier F. Curvature sensing and compensation: A new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223-1225.

[56] Roddier F. Wavefront sensing and the irradiance transport equation[J]. Applied Optics, 1990, 29(10): 1402-1403.

[57] Han I W. New method for estimating wavefront from curvature signal by curve fitting[J]. Optical Engineering, 1995, 34(4): 1232-1237.

[58] Roddier F. Adaptive optics in astronomy[M]. Cambridge: Cambridge University Press, 1999.

[59] Roddier C, Roddier F. Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes[J]. Journal of the Optical Society of America A, 1993, 10(11): 2277-2287.

[60] Bajt S, Barty A, Nugent K A, et al.. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83(1): 67-73.

[61] McMahon P J, Allman B E, Jacobson D L, et al.. Quantitative phase radiography with polychromatic neutrons[J]. Physical Review Letters, 2003, 91(14): 145502.

[62] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1): 339-346.

[63] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.

[64] Zysk A M, Schoonover R W, Carney P S, et al.. Transport of intensity and spectrum for partially coherent fields[J]. Optics Letters, 2010, 35(13): 2239-2241.

[65] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430-14441.

[66] Waller L, Luo Y, Yang S Y, et al.. Transport of intensity phase imaging in a volume holographic microscope[J]. Optics Letters, 2010, 35(17): 2961-2963.

[67] Barty A, Nugent K A, Roberts A, et al.. Quantitative phase tomography[J]. Optics Communications, 2000, 175(4): 329-336.

[68] Tian L, Petruccelli J C, Miao Q, et al.. Compressive X-ray phase tomography based on the transport of intensity equation[J]. Optics Letters, 2013, 38(17): 3418-3421.

[69] Xue B, Zheng S, Cui L, et al.. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Optics Express, 2011, 19(21): 20244-20250.

[70] Bie R, Yuan X H, Zhao M, et al.. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Optics Express, 2012, 20(7): 8186-8191.

[71] Tian L, Petruccelli J C, Barbastathis G. Nonlinear diffusion regularization for transport of intensity phase imaging[J]. Optics Letters, 2012, 37(19): 4131-4133.

[72] Zheng S, Xue B, Xue W, et al.. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Optics Express, 2012, 20(2): 972-985.

[73] Waller L, Tsang M, Ponda S, et al.. Phase and amplitude imaging from noisy images by Kalman filtering[J]. Optics Express, 2011, 19(3): 2805-2815.

[74] 程鸿, 章权兵, 韦穗, 等. 基于强度传输方程的相位检索[J]. 光子学报, 2011, 40(10): 1566-1570.

    Cheng Hong, Zhang Quanbing, Wei Sui, et al.. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566-1570.

[75] 程鸿, 沈川, 张成, 等. 强度传输方程和角谱迭代融合的相位检索算法[J]. 中国激光, 2014, 41(6): 0609001.

    Cheng Hong, Shen Chuan, Zhang Cheng, et al.. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001.

[76] 王潇, 毛珩, 赵达尊. 基于光强传播方程的相位恢复[J]. 光学学报, 2007, 27(12): 2117-2122.

    Wang Xiao, Mao Heng, Zhao Dazun. Phase retrieval based on intensity transport equation[J]. Acta Optica Sinica, 2007, 27(12): 2117-2122.

[77] 薛斌党, 郑世玲, 姜志国. 完全多重网格法求解光强度传播方程的相位恢复方法[J]. 光学学报, 2009, 29(6): 1514-1518.

    Xue Bindang, Zheng Shiling, Jiang Zhiguo. Phase retrieval using transport of intensity equation solved by full multigrid method[J]. Acta Optica Sinica, 2009, 29(6): 1514-1518.

[78] 刘贝贝, 于瀛洁, 伍小燕, 等. 基于光强传输方程的相位恢复条件[J]. 光学 精密工程, 23(10z): 77-84.

    Liu Beibei, Yu Yingjie, Wu Xiaoyan, et al.. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Optics and Precision Engineering, 2015, 23(10z): 77-84.

[79] Zuo C, Chen Q, Li H, et al.. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization[J]. Optics Express, 2014, 22(15): 18310-18324.

[80] Zuo C, Chen Q, Huang L, et al.. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.

[81] Zuo C, Chen Q, Yu Y, et al.. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

[82] Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Optics Letters, 2014, 39(3): 654.

[83] Zuo C, Chen Q, Qu W, et al.. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.

[84] Zuo C, Chen Q, Qu W, et al.. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.

[85] Ichikawa K, Lohmann A W, Takeda M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: Experiments[J]. Applied Optics, 1988, 27(16): 3433-3436.

[86] Gilbarg D A, Trudinger N S. Elliptic partial differential equations of second order[M]. New York: Springer, 2001.

[87] Bhamra K S. Partial differential equations: An introductory treatment with applications[M]. New Delhi: PHI, 2010.

[88] Woods S C, Greenaway A H. Wave-front sensing by use of a Green′s function solution to the intensity transport equation[J]. Journal of the Optical Society of America A, 2003, 20(3): 508-512.

[89] Roddier N A. Algorithms for wavefront reconstruction out of curvature sensing data[C]. SPIE, 1991, 1542: 120-129.

[90] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1-4): 65-75.

[91] Pinhasi S V, Alimi R, Perelmutter L, et al.. Topography retrieval using different solutions of the transport intensity equation[J]. Journal of the Optical Society of America A, 2010, 27(10): 2285-2292.

[92] Gureyev T E, Raven C, Snigirev A, et al.. Hard X-ray quantitative non-interferometric phase-contrast microscopy[J]. Journal of Physics D, 1999, 32(5): 563.

[93] Gureyev T, Roberts A, Nugent K. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932-1942.

[94] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. II: Orthogonal series solution for nonuniform illumination[J]. Journal of the Optical Society of America A, 1996, 13(8): 1670-1682.

[95] Volkov V V, Zhu Y, de Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411-416.

[96] Martinez-Carranza J, Falaggis K, Kozacki T, et al.. Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers[C]. SPIE, 2013, 8789: 87890N.

[97] Huang L, Zuo C, Idir M, et al.. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Optics Letters, 2015, 40(9): 1976-1979.

[98] Parvizi A, Müller J, Funken S A, et al.. A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation[J]. Ultramicroscopy, 2015, 154: 1-6.

[99] Schmalz J A, Gureyev T E, Paganin D M, et al.. Phase retrieval using radiation and matter-wave fields: Validity of Teague′s method for solution of the transport-of-intensity equation[J]. Physical Review A, 2011, 84(2): 023808.

[100] Shanker A, Sczyrba M, Connolly B, et al.. Critical assessment of the transport of intensity equation as a phase recovery technique in optical lithography[C]. SPIE, 2014, 9052: 90521D.

[101] Beleggia M, Schofield M A, Volkov V V, et al.. On the transport of intensity technique for phase retrieval[J]. Ultramicroscopy, 2004, 102(1): 37-49.

[102] Paganin D, Barty A, McMahon P J, et al.. Quantitative phase-amplitude microscopy. III: The effects of noise[J]. Journal of Microscopy, 2004, 214(1): 51-61.

[103] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Journal of Electron Microscopy, 2005, 54(3): 191-197.

[104] Roddier F. Curvature sensing: A diffraction theory[R]. NOAO Advanced Development Program, 1987.

[105] Soto M, Acosta E, Ríos S. Performance analysis of curvature sensors: Optimum positioning of the measurement planes[J]. Optics Express, 2003, 11(20): 2577-2588.

[106] Martin A V, Chen F R, Hsieh W K, et al.. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106(10): 914-924.

[107] Huang S, Xi F, Liu C, et al.. Frequency analysis of a wavefront curvature sensor: Selection of propagation distance[J]. Journal of Modern Optics, 2012, 59(1): 35-41.

[108] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 2010, 18(12): 12552-12561.

[109] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Applied Optics, 2007, 46(33): 7978-7981.

[110] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Optics Letters, 2014, 39(2): 182-185.

[111] Zuo C, Chen Q, Yu Y, et al.. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

[112] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639.

[113] Cowley J M. Diffraction physics (2nd edition)[M]. Amsterdam: North-Holland, 1976.

[114] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Applied Optics, 2014, 53(16): D29-D39.

[115] Zhang J S, Claus R A, Dauwels J, et al.. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Optics Express, 2014, 22(9): 10661-10674.

[116] Barone-Nugent E D, Barty A, Nugent K A. Quantitative phase-amplitude microscopy I: Optical microscopy[J]. Journal of Microscopy, 2002, 206(3): 194-203.

[117] Streibl N. Three-dimensional imaging by a microscope[J]. Journal of the Optical Society of America A, 1985, 2(2): 121-127.

[118] Sheppard C J R. Three-dimensional phase imaging with the intensity transport equation[J]. Applied Optics, 2002, 41(28): 5951-5955.

[119] Guigay J P, Langer M, Boistel R, et al.. Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region[J]. Optics Letters, 2007, 32(12): 1617-1619.

[120] Kou S S, Waller L, Barbastathis G, et al.. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Optics Letters, 2011, 36(14): 2671-2673.

[121] Jenkins M H, Gaylord T K. Quantitative phase microscopy via optimized inversion of the phase optical transfer function[J]. Applied Optics, 2015, 54(28): 8566-8579.

[122] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Optics Express, 2015, 23(18): 23092-23107.

[123] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Optics Express, 2015, 23(21): 28031-28049.

[124] Goodman J W. Statistical optics[M]. New York: Wiley-Interscience, 1985: 567.

[125] Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. UK: CPI Group Ltd, 2000.

[126] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 1984, 49(1): 6-10.

[127] Gureyev T, Paganin D M, Stevenson A W, et al.. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 2004, 93(6): 068103.

[128] Gureyev T E, Nesterets Y I, Paganin D M, et al.. Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination[J]. Optics Communications, 2006, 259(2): 569-580.

[129] Zuo C, Chen Q, Tian L, et al.. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20-32.

[130] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 1986, 3(8): 1227-1238.

[131] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proceedings of the IEEE, 1992, 80(4): 520-538.

[132] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Optics Letters, 1996, 21(21): 1783-1785.

[133] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 1994, 72(8): 1137-1140.

[134] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nature Photonics, 2012, 6(7): 474-479.

[135] Ng R, Levoy M, Brédif M, et al.. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report, 2005, 2(11): 1-11.

[136] Adelson E, Bergen J R. The plenoptic function and the elements of early vision[M].//Computational models of visual processing. Cambridge: MIT Press, 1991: 3-20.

[137] Levoy M, Hanrahan P. Light field rendering[C]. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996: 31-42.

[138] Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 1968, 58(9): 1256-1259.

[139] Zhang Z Y, Levoy M. Wigner distributions and how they relate to the light field[C]. IEEE International Conference on the Computational Photography, San Francisco, 2009.

[140] Zuo C, Chen Q, Asundi A. Transport of intensity equation: A new approach to phase and light field[C]. SPIE, 2014, 9271: 92710H..

[141] Orth A, Crozier K B. Light field moment imaging[J]. Optics Letters, 2013, 38(15): 2666-2668.

[142] Liu J, Xu T, Yue W, et al.. Light-field moment microscopy with noise reduction[J]. Optics Express, 2015, 23(22): 29154-29162.

[143] Blanchard P M, Fisher D J, Woods S C, et al.. Phase-diversity wave-front sensing with a distorted diffraction grating[J]. Applied Optics, 2000, 39(35): 6649-6655.

[144] di Martino J M, Ayubi G A, Dalchiele E A, et al.. Single-shot phase recovery using two laterally separated defocused images[J]. Optics Communications, 2013, 293: 1-3.

[145] Zuo C, Sun J, Zhang J, et al.. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11): 14314-14328.

[146] Allman B E, McMahon P J, Nugent K, et al.. Phase radiography with neutrons[J]. Nature, 2000, 408(6809): 158-159.

[147] Volkov V, Zhu Y. Lorentz phase microscopy of magnetic materials[J]. Ultramicroscopy, 2004, 98(2): 271-281.

[148] Dorrer C, Zuegel J D. Optical testing using the transport-of-intensity equation[J]. Optics Express, 2007, 15(12): 7165-7175.

[149] Shomali R, Darudi A, Nasiri S. Application of irradiance transport equation in aspheric surface testing[J]. Optik, 2012, 123(14): 1282-1286.

[150] Ross G J, Bigelow A W, Randers-Pehrson G, et al.. Phase-based cell imaging techniques for microbeam irradiations[J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 241(1): 387-391.

[151] Curl C L, Bellair C J, Harris P J, et al.. Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells[J]. Clinical Experimental Pharmacology and Physiology, 2004, 31(12): 896-901.

[152] Curl C L, Bellair C, Harris P, et al.. Single cell volume measurement by quantitative phase microscopy (QPM): A case study of erythrocyte morphology[J]. Cellular Physiology and Biochemistry, 2006, 17(5-6): 193-200.

[153] Dragomir N M, Goh X M, Curl C L, et al.. Quantitative polarized phase microscopy for birefringence imaging[J]. Optics Express, 2007, 15(26): 17690-17698.

[154] Ampem-Lassen E, Huntington S T, Dragomir N M, et al.. Refractive index profiling of axially symmetric optical fibers: A new technique[J]. Optics Express, 2005, 13(9): 3277-3282.

[155] Roberts A, Ampem-Lassen E, Barty A, et al.. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy[J]. Optics Letters, 2002, 27(23): 2061-2063.

[156] Bostan E, Froustey E, Nilchian M, et al.. Variational phase imaging using the transport-of-intensity equation[J]. IEEE Transactions on Image Processing, 2016, 25(2): 807-817.

[157] Nguyen T, Nehmetallah G, Tran D, et al.. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Applied Optics, 2015, 54(35): 10443-10453.

[158] Zuo C, Chen Q, Asundi A. Comparison of digital holography and transport of intensity for quantitative phase contrast imaging[M]. //Fringe 2013. Heidelberg: Springer Berlin Heidelberg, 2014: 137-142.

[159] Allen L, Faulkner H M L, Nugent K, et al.. Phase retrieval from images in the presence of first-order vortices[J]. Physical Review E, 2001, 63(3): 037602.

[160] Lubk A, Guzzinati G, Brrnert F, et al.. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Physical Review Letters, 2013, 111(17): 173902.

左超, 陈钱, 孙佳嵩, . 基于光强传输方程的非干涉相位恢复与定量相位显微成像:文献综述与最新进展[J]. 中国激光, 2016, 43(6): 0609002. Zuo Chao, Chen Qian, Sun Jiasong, Anand Asundi. Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of Intensity Equation: A Review[J]. Chinese Journal of Lasers, 2016, 43(6): 0609002.

本文已被 24 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!