Photonics Research, 2020, 8 (2): 02000219, Published Online: Feb. 10, 2020  

Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution Download: 555次

Author Affiliations
1 Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA
2 King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
3 e-mail: fainman@ece.ucsd.edu
Figures & Tables

Fig. 1. (a) Schematic and (b) microscopic image of the fabricated device. (c) Zoom view of the waveguides and heater. The waveguide is designed to have a serpentine shape to reduce the footprint, and the heater has a width of 17 μm that covers five waveguides in order to maintain low resistance.

下载图片 查看原文

Fig. 2. Simulated Ey intensity of the TE mode in (a) a 0.5 μm wide waveguide and (b) a 1 μm wide waveguide. The thickness is 220 nm.

下载图片 查看原文

Fig. 3. Simulated interferograms and recovered spectra from two different devices: (a), (b) a balanced MZI with waveguide length of 3 cm; (c), (d) a balanced MZI with waveguide length of 10 cm. For both devices, the maximum temperature change is 60 K. Their individual spectral resolutions are 0.42 THz and 0.13 THz, respectively.

下载图片 查看原文

Fig. 4. Simulated interferogram and recovered spectrum from two different devices: (a), (b) a balanced MZI with slightly different waveguide widths for the two arms (0.5 μm and 0.52 μm); (c), (d) a balanced MZI with slightly different waveguide widths for the two arms (1 μm and 1.02 μm). The 20 nm width difference corresponds with typical fabrication variation. For both devices, the arm length is 10 cm and maximum temperature change is 60 K.

下载图片 查看原文

Fig. 5. Cutback method to characterize two different types of strip waveguides with 0.5 μm width and 1 μm width.

下载图片 查看原文

Fig. 6. Experimental results of a balanced FTS with identical arm widths of 1 μm. (a) Raw data of the interferogram as a function of power injection to the heaters. The sign in the x axis refers to the actuation of different heaters. (b) Plot of the post-processed interferogram ready for Fourier transformation. (c) The reconstructed spectrum compared with the original input spectrum.

下载图片 查看原文

Fig. 7. Experimental results of impacts of fabrication variation on a balanced FTS. (a), (b) Interferogram and spectrum reconstruction of a balanced FTS with arm widths of 1 μm and 1.02 μm. (c), (d) Interferogram and spectrum reconstruction of a balanced FTS with arm widths of 0.5 μm and 0.52 μm. The 20 nm difference in the two arms represents the fabrication variation in CMOS technology. Clearly, the device using a large waveguide width is tolerant to this amount of variation, while the 0.5 μm device fails to reconstruct the spectrum.

下载图片 查看原文

Ang Li, Jordan Davis, Andrew Grieco, Naif Alshamrani, Yeshaiahu Fainman. Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution[J]. Photonics Research, 2020, 8(2): 02000219.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!