Photonics Research, 2020, 8 (2): 02000219, Published Online: Feb. 10, 2020  

Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution Download: 555次

Author Affiliations
1 Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA
2 King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
3 e-mail: fainman@ece.ucsd.edu
Copy Citation Text

Ang Li, Jordan Davis, Andrew Grieco, Naif Alshamrani, Yeshaiahu Fainman. Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution[J]. Photonics Research, 2020, 8(2): 02000219.

References

[1] D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, R. Goodacre. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl. Environ. Microbiol., 2002, 68: 2822-2828.

[2] C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, G. M. Miskelly. Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc., 2005, 127: 11636-11645.

[3] M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, G. Z. Mashanovich. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip. IEEE Photon. Technol. Lett., 2015, 28: 528-531.

[4] E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, P. Royer. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photonics, 2007, 1: 473-478.

[5] P. Fellgett. On the ultimate sensitivity and practical performance of radiation detectors. J. Opt. Soc. Am., 1949, 39: 970-976.

[6] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, T.-Y. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 2013, 20: 405-416.

[7] A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, M. Vachon. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett., 2013, 38: 706-708.

[8] B. I. Akca. Design of a compact and ultrahigh-resolution Fourier-transform spectrometer. Opt. Express, 2017, 25: 1487-1494.

[9] H. Podmore, A. Scott, P. Cheben, A. V. Velasco, J. H. Schmid, M. Vachon, R. Lee. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt. Lett., 2017, 42: 1440-1443.

[10] X. Nie, E. Ryckeboer, G. Roelkens, R. Baets. CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Opt. Express, 2017, 25: A409-A418.

[11] M. C. Souza, A. Grieco, N. C. Frateschi, Y. Fainman. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat. Commun., 2018, 9: 665.

[12] S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, A. Q. Liu. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun., 2019, 10: 1.

[13] M.-C. Tien, J. F. Bauters, M. J. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers. Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Opt. Express, 2011, 19: 13551-13556.

[14] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 2018, 36: 4312-4318.

[15] D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, J. Hu. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 2018, 9: 4405.

[16] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol., 2005, 23: 401-412.

[17] A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, W. Bogaerts. Backscattering in silicon microring resonators: a quantitative analysis. Laser Photon. Rev., 2016, 10: 420-431.

[18] LiA.XingY.Van LaerR.BaetsR.BogaertsW., “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160161.

[19] S. K. Selvaraja, W. Bogaerts, D. Van Thourhout. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement. Opt. Commun., 2011, 284: 2141-2144.

[20] Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, L. Chrostowski. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Opt. Express, 2017, 25: 9712-9733.

Ang Li, Jordan Davis, Andrew Grieco, Naif Alshamrani, Yeshaiahu Fainman. Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution[J]. Photonics Research, 2020, 8(2): 02000219.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!