激光技术, 2023, 47 (2): 220, 网络出版: 2023-04-12  

初始位置对电子运动轨迹和空间角辐射的影响

Influence of initial position on the trajectory and spatial angular radiation of electrons
作者单位
1 南京邮电大学 贝尔英才学院, 南京 210023
2 南京邮电大学 理学院, 南京 210023
摘要
为了探究在圆偏振激光脉冲中电子初始位置对其运动轨迹和空间角辐射的影响, 根据非线性汤姆逊散射模型、能量方程以及拉格朗日方程推导出了高能电子的空间运动方程, 并与MATLAB数值模拟的方法相结合, 做出了高能电子空间运动轨迹图和空间角辐射模拟图。结果表明, 电子在涡旋横向力的作用下在全空间运动的前部轨迹呈紧密分离螺旋状, 而后部轨迹由空间间隔遥远的稀疏圆组成, 随着电子初始位置的右移, 空间角辐射达到最大值时, 极角θ和方位角的值有不断减小的趋势, 在z0=5λ0后趋于稳定, (θ,)=(23.5°,175.5°); 激光脉冲中电子初始位置的改变对电子的运动轨迹和空间角辐射有较大影响。该结果为后续研究电子初始位置对高能电子辐射特性的影响奠定了基础。
Abstract
For the sake of studying the initial position’s influence of electrons on the trajectory and spatial angular radiation of high-energy electrons in circularly polarized laser pulses, the spatial motion equation of high-energy electrons was deduced theoretically on the basis of nonlinear Thomson scattering model, energy equation, Lagrange equation, and in combination with the assistance of MATLAB numerical simulation, the spatial motion trajectory diagram and spatial angular radiation simulation diagram of high-energy electrons made. The results show that, under the action of the transverse vortex force, the front trajectory of the electron in the whole space is in a tightly separated spiral shape, and the rear trajectory is composed of sparse circles with distant spatial spacing. With the right shift of the initial position of the electron, the value of the polar angle θ and azimuth  has a decreasing trend when the spatial angular radiation reaches the maximum. Specifically, it becomes stable when z0=5λ0 and (θ,)=(23.5°,175.5°). Therefore the change of the initial position of the electron in the laser pulse has a great influence on the trajectory and spatial angular radiation of the electron, which creates the groundwork for the subsequent research of the initial position’s influence of the electron on the radiation characteristics of high-energy electrons.
参考文献

[1] YAN Ch Y, ZHANG Q J, LUO M H. Generation ofattosecond X-ray pulse in the interaction between the pulses and the relativistic electrons[J]. Acta Physica Sinica, 2011, 60(3): 397-403(in Ch-inese).

[2] LU M Ch, LIU G Y. Petawatt laser and its application[J]. Journal of Sichuan Normal University (Natural Science Edition), 2002, 25(1): 81-83(in Chinese).

[3] XIAO Y Z, WANG Z H, ZHI J L, et al. Collimated high-energy electron beam obtained by controlling the amplitude of the laser pulse[J]. Shandong Industrial Technology, 2018(13):122(in Chinese).

[4] TIAN Y W, YU W, LU P X, et al. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum [J].Acta Physica Sinica, 2005, 54(9): 4208-4212(in Ch-inese).

[5] WANG Y Q, ZHOU Q Y, ZHUANG J W, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses[J]. Optics Express, 2021, 29(14):22636-22647.

[6] WANG Y Q, WANG C L, LI K, et al. Analysis of spatial radiation and motion features of nonlinear Thomson scattering in circularly polarized laser pulses[J]. Optical and Quantum Electronics, 2021, 53(5): 229.

[7] WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laserbeams[J]. Laser Physics Letters, 2021, 18(1): 015303.

[8] WANG Y Q, WANG C L,ZHOU Q Y, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations[J]. Laser Physics, 2021, 31(1): 015301.

[9] YU P H, LIN H N, GU Z Y, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses[J]. Laser Physics, 2020, 30(4): 045301.

[10] CHEN Z J, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding withelectrons[J]. Laser Physics, 2021, 31(7): 075401.

[11] GLENSER S, REDMER R. X-ray Thomson scattering in high energy densityplasmas[J]. Review of Modern Physics, 2009, 81(4): 1625-1663.

[12] BOCA M, OPREA A. Thomson scattering in the high intensity regime [J].Physica Scripta, 2011,83(5): 055404.

[13] BROWN W J, HARTEMANN F V. Three-dimensional time and frequency-domain theory of femtosecond X-ray pulse generation through Thomson scattering[J]. Physical Review Special Topics-Accelerators and Beams, 2004,7(6): 060703.

[14] SCHOELIEN R W, LEEMANS W, CHIN A, VOLFBEYN P, et al. Femtosecond X-ray pulses at 0.4  generated by 90° Thompson scattering: A tool for probing the structural dynamics of materials[J]. Science,1996,274(5285): 236-238.

[15] WALLER I, HARTREE D R. On the intensity of totalscattering of X-rays[J]. Proceedings of the Royal Society, 1929, A124(793): 119-142.

[16] LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laserpulses[J]. Optik, 2019, 183(12):813-817.

[17] ZHUANG J W, WANG Y Q, WANG C L, et al. Spectral shape of quasi-monochromatic radiation from electron colliding with tightly focused laserpulses[J]. Laser Physics, 2021, 31(6): 0065403.

[18] ZHUANG J W, YAN Y L, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401.

[19] YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron’s initial position on spatial radiation of high-energyelectrons[J]. Laser Technology, 2022, 46(4): 556-560(in Chinese).

[20] ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomsom scattering[J]. Acta Physica Sinica, 2005,54(3):1018-1035(in Chinese).

朱佳宇, 高周景明, 蒋凌峰, 田友伟. 初始位置对电子运动轨迹和空间角辐射的影响[J]. 激光技术, 2023, 47(2): 220. ZHU Jiayu, GAO Zhoujingming, JIANG Lingfeng, TIAN Youwei. Influence of initial position on the trajectory and spatial angular radiation of electrons[J]. Laser Technology, 2023, 47(2): 220.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!