Ultrafast Science, 2023, 3 (1): 0022, Published Online: Dec. 4, 2023  

Dual-Wavelength Spectrum-Shaped Mid-Infrared Pulses and Steering High-Harmonic Generation in Solids

Author Affiliations
1 College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610064, China.
2 Key Laboratory of High Energy Density Physics and Technology (MoE), College of Physics, Sichuan University, Chengdu 610064, China.
3 College of Physics, Key Laboratory of High Energy Density Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China.
Mid-infrared (MIR) ultra-short pulses with multiple spectral-band coverage and good freedom in spectral and temporal shaping are desired by broad applications such as steering strong-field ionization, investigating bound-electron dynamics, and minimally invasive tissue ablation. However, the existing methods of light transient generation lack freedom in spectral tuning and require sophisticated apparatus for complicated phase and noise control. Here, with both numerical analysis and experimental demonstration, we report the first attempt, to the best our knowledge, at generating MIR pulses with dual-wavelength spectral shaping and exceptional freedom of tunability in both the lasing wavelength and relative spectral amplitudes, based on a relatively simple and compact apparatus compared to traditional pulse synthesizers. The proof-of-concept demonstration in steering the high-harmonic generation in a polycrystalline ZnSe plate is facilitated by dual-wavelength MIR pulses shaped in both spectral and temporal domains, spanning from 5.6 to 11.4 μm, with multi-microjoule pulse energy and hundred- milliwatt average power. Multisets of harmonics corresponding to different fundamental wavelengths are simultaneously generated in the deep ultraviolet region, and both the relative strength of individual harmonics sets and the spectral shapes of harmonics are harnessed with remarkable freedom and flexibility. This work would open new possibilities in exploring femtosecond control of electron dynamics and light–matter interaction in composite molecular systems.

[1] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature. 2011;475:78–81.

[2] Yoshioka K, Katayama I, Arashida Y, Ban A, Kawada Y, Konishi K, Takahashi H, Takeda J. Tailoring single-cycle near field in a tunnel junction with carrier envelope phase-controlled terahertz electric fields. Nano Lett. 2018;18(8):5198–5204.

[3] Rybka T, Ludwig M, Schmalz MF, Knittel V, Brida D, Leitenstorfer A. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat Photonics. 2016;10:667–670.

[4] Ludwig M, Aguirregabiria G, Ritzkowsky F, Rybka T, Marinica DC, Aizpurua J, Borisov AG, Leitenstorfer A, Brida D. Sub-femtosecond electron transport in a nanoscale gap. Nat Phys. 2020;16:341–345.

[5] Krausz F, Stockman MI. Attosecond metrology: From electron capture to future signal processing. Nat Photonics. 2014;8(6):205–213.

[6] Hassan MT, Luu TT, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov AM, Pervak V, Krausz F, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature. 2016;530:66–70.

[7] Chipperfield LE, Robinson JS, Tisch JWG, Marangos JP. Ideal waveform to generate the maximum possible electron Recollision energy for any given oscillation period. Phys Rev Lett. 2009;102(6):Article 063003.

[8] Jin C, Wang G, Wei H, Le A-T, Lin CD. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields. Nat Commun. 2014;5:Article 4003.

[9] Li X, Fan J, Ma J, Wang G, Jin C. Application of optimized waveforms for enhancing high-harmonic yields in a three-color laser-field synthesizer. Opt Express. 2019;27(2):841–854.

[10] Taniuchi T, Nakanishi H. Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator. J Appl Phys. 2004;95(12):Article 7588.

[11] Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, et al. Control of electron localization in molecular dissociation. Science. 2006;312(5771):246–248.

[12] Movasaghi Z, Rehman S, Rehman IU. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–179.

[13] Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, et al. Tissue ablation by a free-electron laser tuned to the amide II band. Nature. 1994;371:416–419.

[14] Perry MD, Crane JK. High-order harmonic emission from mixed fields. Phys Rev A. 1993;48(6):Article R4051.

[15] Watanabe S, Kondo K, Nabekawa Y, Sagisaka A, Kobayashi Y. Two-color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic. Phys Rev Lett. 1994;73(20):2692–2695.

[16] Huang S-W, Cirmi G, Moses J, Hong KH, Bhardwaj S, Birge JR, Chen LJ, Li E, Eggleton BJ, Cerullo G, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat Phys. 2011;5:475–479.

[17] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat Photonics. 2010;4:33–36.

[18] Rossi GM, Mainz RE, Yang Y, Scheiba F, Silva-Toledo MA, Chia SH, Keathley PD, Fang S, Mücke OD, Manzoni C, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nat Photonics. 2020;14:629–635.

[19] Wirth A, Hassan MT, Grguras I, Gagnon J, Moulet A, Luu TT, Pabst S, Santra R, Alahmed ZA, Azzeer AM, et al. Synthesized light transients. Science. 2011;334(6053):195–200.

[20] Timmers H, Sabbar M, Hellwagner J, Kobayashi Y, Neumark DM, Leone SR. Polarization assisted amplitude gating as a route to tunable, high-contrast single attosecond pulses. Optica. 2016;3(7):707–710.

[21] Yang Y, Mainz RE, Rossi GM, Scheiba F, Silva-Toledo MA, Keathley PD, Cirmi G, Kärtner FX. Strong-field coherent control of isolated attosecond pulse generation. Nat Commun. 2021;12:Article 6641.

[22] Luu TT, Garg M, Kruchinin SY, Moulet A, Hassan MT, Goulielmakis E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature. 2015;521:498–502.

[23] Garg M, Zhan M, Luu TT, Lakhotia H, Klostermann T, Guggenmos A, Goulielmakis E. Multi-petahertz electronic metrology. Nature. 2016;538:359–363.

[24] Kaneshima K, Ishii N, Takeuchi K, Itatani J. Generation of carrier-envelope phase-stable mid-infrared pulses via dual-wavelength optical parametric amplification. Opt Express. 2016;24(8):8660–8665.

[25] Liang H, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro LF, Kärtner FX, et al. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nat Commun. 2017;8:141.

[26] Ridente E, Weidman M, Mamaikin M, Jakubeit C, Krausz F, Karpowicz N. Hybrid phase-matching for optical parametric amplification of few-cycle infrared pulses. Optica. 2020;7(9):1093–1096.

[27] Kim YW, Shao T-J, Kim H, Han S, Kim S, Ciappina M, Bian X-B, Kim S-W. Spectral interference in high harmonic generation from solids. ACS Photonics. 2019;6(4):851–857.

[28] Goh SJ, Reinink J, Tao Y, van der Slot PJM, Bastiaens HJM, Herek JL, Biedron SG, Milton SV, Boller KJ. Spectral control of high-harmonic generation via drive laser pulse shaping in a wide-diameter capillary. Opt Express. 2016;24(2):1604–1615.

[29] Qu S, Liang H, Liu K, Zou X, Li W, Wang QJ, Zhang Y. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt Lett. 2019;44(10):2422–2425.

[30] Xiao Y, Agrawal GP, Maywar DN. Nonlinear pulse propagation: A time-transformation approach. Opt Lett. 2012;37(7):1271–1273.

[31] Martinez O. 3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 μm region. IEEE J Quantum Electron. 1987;23(1):59–64.

[32] Penwell SB, Whaley-Mayda L, Tokmakoff A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source. Opt Lett. 2018;43(6):1363–1366.

[33] Qu S, Nagar GC, Li W, Liu K, Zou X, Luen SH, Dempsey D, Hong K-H, Wang QJ, Zhang Y, et al. Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime. Opt Lett. 2020;45(8):2175–2178.

[34] Ghimire S, DiChiara AD, Sistrunk E, Agostini P, DiMauro LF, Reis DA. Observation of high-order harmonic generation in a bulk crystal. Nat Phys. 2011;7:138–141.

[35] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A, Baltuška A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun. 2020;11:Article 292.

[36] Mitrofanov AV, Sidorov-Biryukov DA, Nazarov MM, Voronin AA, Rozhko MV, Shutov AD, Ryabchuk SV, Serebryannikov EE, Fedotov AB, Zheltikov AM. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica. 2020;7(1):15–19.

[37] Jang D, Schwartz RM, Woodbury D, Griff-McMahon J, Younis AH, Milchberg HM, Kim KY. Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica. 2019;6(10):1338–1341.

[38] Wünsche M, Fuchs S, Aull S, Nathanael J, Möller M, Rödel C, Paulus GG. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation. Opt Express. 2017;25(6):6936–6944.

[39] Fuchs S, Wünsche M, Nathanael J, Abel JJ, Rödel C, Biedermann J, Reinhard J, Hübner U, Paulus GG. Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source. Optica. 2017;4(8):903–906.

[40] Shapiro DA, Yu Y-S, Tyliszczak T, Cabana J, Celestre R, Chao W, Kaznatcheev K, Kilcoyne ALD, Maia F, Marchesini S, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat Photonics. 2014;8:765–769.

[41] Witte S, Tenner VT, Noom DWE, KSE E. Lensless diffractive imaging with ultra-broadband table-top sources: From infrared to extreme-ultraviolet wavelengths. Light Sci Appl. 2014;3(3):Article e163.

[42] Rini M, Tobey R, Dean N, Itatani J, Tomioka Y, Tokura Y, Schoenlein RW, Cavalleri A. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature. 2007;449:72–74.

[43] Disa AS, Nova TF, Cavalleri A. Engineering crystal structures with light. Nat Phys. 2021;17:1087–1092.

Linzhen He, Weizhe Wang, Kan Tian, Maoxing Xiang, Zhongjun Wan, Bo Hu, Yang Li, Han Wu, Zi-Yu Chen, Fan Yang, Houkun Liang. Dual-Wavelength Spectrum-Shaped Mid-Infrared Pulses and Steering High-Harmonic Generation in Solids[J]. Ultrafast Science, 2023, 3(1): 0022.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。