量子电子学报, 2023, 40 (2): 217, 网络出版: 2023-04-15  

红外-太赫兹光电探测器应用及前沿变革趋势

Application and frontier trend of infrared-terahertz photoelectric detector
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200080
2 东华大学理学院, 上海 201620
3 上海师范大学数理学院, 上海 200233
4 上海科技大学物质科学与技术学院, 上海 201210
5 上海大学微电子学院, 上海 200444
摘要
自红外辐射被发现以来, 科学家一直在努力将红外技术应用于地球观测、航天遥感和宇宙探索等领域。目前, 第二、三代红外探测器已进入大规模应用, 高端三代也在逐步突破, 并随着材料制备技术、纳米加工技术、集成技术和相关交叉学科的发展, 开始出现了具有前瞻性的新材料、新技术和新概念。红外-太赫兹探测器也开始由单一探测、被动探测和探测分立的传统探测器形式, 逐渐走向多维探测、自主探测和智能化芯片集成的变革发展方向。在介绍光电探测器物理机制的基础上, 概述了红外-太赫兹探测技术在天文遥感领域的应用与发展, 重点综述了红外-太赫兹探测器有望出现变革式发展的三大方向, 包括基于人工微结构的光场集成、基于三维堆叠技术的片上智能化和新型低维材料的应用, 并展望了未来探测器向着超高性能、多维感知、智能化和感存算一体化的发展趋势。
Abstract
Since the discovery of infrared radiation, scientists have been trying to apply infrared technology to the fields of earth observation, space remote sensing and space exploration. At present, the second and third generation of infrared detectors have entered large-scale applications, and the third generation of high-end infrared detectors is gradually breaking through. With the development of material preparation technology, nano-processing technology, integration technology and related cross-disciplines, forward-looking new materials, new technologies and new concepts have begun to appear. Infrared-terahertz detectors has also begun to change gradually from the traditional form of single detection, passive detection and separate detection to the direction of multi-dimensional detection, autonomous detection and intelligent chip integration. On the basis of introducing the physical mechanism of photoelectric detector, this paper summarizes the application and development of infrared-terahertz detection technology in the field of astronomical remote sensing, then focuses on the three expected revolutionary development direction of infrared-terahertz detectors, including the integration of light field based on artificial microstructure, the on-chip intelligence based on three-dimensional stacking technology and the application of new low-dimensional materials, and finally looks forward to the future development trend of detectors towards ultra-high performance, multi-dimensional sensing, intelligence and integration of sensing, memory and computing.
参考文献

[1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics [J]. Nature Materials, 2017, 16(2): 264-272.

[2] Miao J S, Song B, Xu Z H, et al. Single pixel black phosphorus photodetector for near-infrared imaging [J]. Small, 2018, 14(2): 1702082.

[3] Ye L, Li H, Chen Z F, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction [J]. ACS Photonics, 2016, 3(4): 692-699.

[4] Singh M K, Gautam R. Developing a long-term high-resolution winter fog climatology over south Asia using satellite observations from 2002 to 2020 [J]. Remote Sensing of Environment, 2022, 279: 113128.

[5] Rogalski A, Huckridge D A, Ebert R, et al. Next decade in infrared detectors [J]. Technology and Applications, 2017, 3: 100-105.

[6] Wang C R, Yang L F, Cao X, et al. Recent progress of airborne infrared remote sensing technology in SITP [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 110-121.

[7] Wang H P, Wan X, He Z P. Detectiontechnology of deep space material composition based on infrared reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(Sup 1): 59-60.

[8] Rogalski A. History of infrared detectors [J]. Opto-Electronics Review, 2012, 20(3): 279-308.

[9] Ma Q J, Wang J Y, Shu R. Development of infrared spectrometer in deep space exploration [J]. Infrared, 2005, 26(7): 1-7.

[10] Ma Y, Zhang S, Liu Y, et al. Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data [J]. Chinese Optics, 2022, 15(3): 525-533.

[11] Shen J L, Zhang C L. Terahertz nondestructive imaging technology and its application [J]. Nondestructive Testing Technology, 2005, 27(3): 146-147.

[12] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-Explosives, weapons and drugs [J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280.

[13] Wang L H, Yuan M H, Huang H, et al. Recognition of edge object of human body in THz security inspection system [J]. Infrared and Laser Engineering, 2017, 46(11): 1125002.

[14] Akkas M A. Terahertz wireless data communication [J]. Wireless Networks, 2019, 25(1): 145-155.

[15] Hubers H W. Terahertz heterodyne receivers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 378-391.

[16] Wild W. Terahertz heterodyne technology for astronomy and planetary science [C]. Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 2007: 323-325.

[17] Herschel W. Experiments on the refrangibility of the invisible rays of the Sun [J]. Philosophical Transactions of the Royal Society of London, 1800, 90: 284-292.

[18] Barr E S. Historical survey of the early development of the infrared spectral region [J]. American Journal of Physics, 1960, 28(1): 42-54.

[19] Barr E S. The infrared pioneers-II. macedonio Melloni [J]. Infrared Physics, 1962, 2(2): 67-74.

[20] Barr E S. Historical survey of the early development of the infrared spectral region [J]. American Journal of Physics, 1960, 28(1): 42-54.

[21] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors [J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.

[22] Albert E. Concerning an heuristic point of view toward the emission and transformation of light [J]. Annals of Physics, 1905, 17:132.

[23] Case T W. Notes on the change of resistance of certain substances in light [J]. Physical Review, 1917, 9(4): 305-310.

[24] Cashman R J. Film-type infrared photoconductors [J]. Proceedings of the IRE, 1959, 47(9): 1471-1475.

[25] Lovell D J. The development of lead salt detectors [J]. American Journal of Physics, 1969, 37(5): 467-478.

[26] Elliott T. Recollections of MCT work in the UK at malvern and southampton [C]. SPIE, 2009, 7298: 1-23.

[27] Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

[28] Li J B, Li D S, Wu S J, et al. The research progress in type II superlattices infrared focal plane array detectors [J]. Infrared Technology, 2021, 43(11): 1034-1043.

[29] Levine B F. Quantum-well infrared photodetectors [J]. Journal of Applied Physics, 1993, 74(8): R1-R81.

[30] Shao X M, Gong H M, Li X, et al. Developments of high performance short-wave infrared InGaAs focal plane detectors [J]. Infrared Technology, 2016, 38(8): 629-635.

[31] Yao L B, Chen N, Hu D M, et al. Digital infrared focal plane array detectors(Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 98-108.

[32] Lu X W, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Advanced Materials, 2019, 31(50): e1902044.

[33] Bhan R K, Saxena R S, Jalwani C R, et al. Uncooled infrared microbolometer arrays and their characterisation techniques [J]. Defence Science Journal, 2009, 59(6): 580-589.

[34] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2): 1086-1101.

[35] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.

[36] Hu F J, Sun J Y, Brindley H E, et al. Systems analysis for thermal infrared ‘THz torch’ applications [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(5): 474-495.

[37] Müller R, Gutschwager B, Hollandt J, et al. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(7): 654-661.

[38] Qin H, Sun J D, Liang S X, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor [J]. Carbon, 2017, 116: 760-765.

[39] De Y. High temperature superconducting terahertz detector [J]. Advanced Materials, 2015, 3(50): 19020.

[40] Ghosh S, Mukhopadhyay B, Sen G, et al. Performance analysis of GeSn/SiGeSn quantum well infrared photodetector in terahertz wavelength region [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113692.

[41] Lewis R A. A review of terahertz sources [J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374001.

[42] Liu Z J, Liang Z Q, Tang W, et al. Design and fabrication of low-deformation micro-bolometers for THz detectors [J]. Infrared Physics & Technology, 2020, 105: 103241.

[43] Ullah Z, Witjaksono G, Nawi I, et al. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications [J]. Sensors, 2020, 20(5): 1401.

[44] Siegel P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[45] Bai T Z. Principle and Technology of Photoelectric Imaging [M]. Beijing: Beijing Institute of Technology Press, 2006.

[46] Partnership A, Brogan C L, Pérez L M, et al. The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HLTau region [J]. The Astrophysical Journal Letters, 2015, 808(1): L3.

[47] David W, Steve P, Eric Chauvin, et al. The CCAT 25 m diameter submillimeter-wave telescope [C]. Proceedings of SPIE, 2012, 8444(2M): 1-14.

[48] Robson I, Holland W S, Friberg P. Celebrating 30 years of science from the James Clerk Maxwell Telescope [J]. Royal Society Open Science, 2017, 4(9): 170754.

[49] Wootten A, Thompson A R. The Atacama large millimeter/submillimeter array [J]. Proceedings of the IEEE, 2009, 97(8): 1463-1471.

[50] Nicholas G, Peter A R, Francesco E A, et al. The next generation BLAST experiment [J]. Journal of Astronomical Instrumentation, 2014, 3(2): 1440001.

[51] Young E T, Becklin E E, Marcum P M, et al. Early science with SOFIA, the stratospheric observatory for infrared astronomy [J]. The Astrophysical Journal Letters, 2012, 749(2): L17.

[52] Temi P, Marcum P M, Young E, et al. The Sofia observatory at the start of routine science operations: Mission capabilities and performance [J]. The Astrophysical Journal Supplement Series, 2014, 212(2): 24.

[53] Campbell P. IRAS discovery [J]. Nature, 1983, 306(5945): 725.

[54] Neugebauer G, Habing H J, van Duinen R, et al. The infrared astronomical satellite(IRAS) mission [J]. Astrophysical Journal, 1984, 278: L1-L6.

[55] Mather J C. The cosmic background explorer(COBE) mission [C]. Proceedings of SPIE, 1993, 2019: 146-157.

[56] Murakami H, Freund M M, Ken G G, et al. The IRTS(infrared telescope in space) mission [J]. Publications of the Astronomical Society of Japan, 1996, 48(5): L41-L46.

[57] Kessler M F. The Infrared Space Observatory(ISO) mission [J]. Astronomy and Astrophysics, 1996, 315(2): L27-L31.

[58] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission [J]. Astrophysical Journal Supplement Series, 2004, 154: 1-9.

[59] Pilbratt G L, Riedinger J R, Passvogel T, et al. Herschel space observatory: An ESA facility for far-infrared and submillimetre astronomy [J]. Astronomy and Astrophysics, 2010, 518: L1.

[60] Planck C. Planck early results. I. The Planck mission [J]. Astronomy and Astrophysics, 2011, 536: A1.

[61] Wright E L, Eisenhardt P, MainzerA, et al. The wide-field infrared survey explorer(wise): Mission description and initial on-orbit performance [J]. The Astronomical Journal, 2010, 140(6): 1868-1881.

[62] Menzel M T, Marie B, Michael D, et al. Systems engineering on the James Webb Space Telescope [C]. Proceedings of SPIE, 2010, 7738(0X): 1-13.

[63] Ye Z H, Li H H, Wang J D, et al. Recent hot spots and innovative trends of infrared photon detectors [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 15-39.

[64] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces [J]. Nano Letters, 2016, 16(9): 5319-5325.

[65] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces [J]. Nano Letters, 2017, 17(5): 3027-3034.

[66] Nicholls L H, Rodríguez-Fortuo F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials [J]. Nature Photonics, 2017, 11(10): 628-633.

[67] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces [J]. Nano Letters, 2017, 17(1): 407-413.

[68] Qu Y R, Li Q, Gong H M, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films [J]. Advanced Optical Materials, 2016, 4(3): 480-486.

[69] Primot J. Theoretical description of Shack-Hartmann wave-front sensor [J]. Optics Communications, 2003, 222(1): 81-92.

[70] Fu Y N, Min C J, Yu J H, et al. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces [J]. Nanoscale, 2019, 11(39): 18303-18310.

[71] Feng F, Si G Y, Min C J, et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities [J]. Light: Science & Applications, 2020, 9(1): 95.

[72] Wei J X, Li Y, Wang L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection [J]. Nature Communications, 2020, 11: 6404.

[73] Chen M, Wang Y X, Zhao Z R. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity [J]. ACS Nano, 2022, 16(10): 17263-17273.

[74] Gunning W J, DeNatale J, Stupar P, et al. Dual band adaptive focal plane array: An example of the challenge and potential of intelligent integrated microsystems [C]. Proceedings of SPIE, 2006, 6232: 62320F.

[75] Musca C A, Antoszewski J, Keating A J, et al. MEMS-based microspectrometers for infrared sensing [C]. International Conference on Optical MEMS and Nanophotonics, 2007: 137-138.

[76] Mao H F, Dilusha Silva K K M B, Martyniuk M, et al. MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging [J]. Journal of Microelectromechanical Systems, 2016, 25(1): 227-235.

[77] Temple D, Bower C A, Malta D, et al. High density 3-D integration technology for massively parallel signal processing in advanced infrared focal plane array sensors [C]. International Electron Devices Meeting, 2006.

[78] Guo J X, Xie R Z, Wang P, et al. Infrared photo detectors for multidimensional optical information acquisition [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 40-60.

[79] Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

[80] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states [J]. Nano Letters, 2016, 16(1): 80-87.

[81] Castilla S, Terrés B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Letters, 2019, 19(5): 2765-2773.

[82] Luxmoore I J, Liu P Q, Li P L, et al. Graphene-metamaterial photodetectors for integrated infrared sensing [J]. ACS Photonics, 2016, 3(6): 936-941.

[83] De Sanctis A, Mehew J D, Craciun M F, et al. Graphene-based light sensing: Fabrication, characterisation, physical properties and performance [J]. Materials, 2018, 11(9): 1762.

[84] Ryzhii V, Ryzhii M, Shur M S, et al. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p-n junctions [J]. Journal of Physics: Applied Physics, 2016, 49(31): 1-14.

[85] Liu C L, Wang L, Chen X S, et al. Room temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene [J]. Advanced Optical Materials, 2018, 6(24): 1800836.

[86] Wu D, Yan K, Zhou Y, et al. Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions [J]. Journal of the American Chemical Society, 2013, 135(30): 10926-10929.

[87] Wang L, Liu C L, Chen X S, et al. Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor [J]. Advanced Functional Materials, 2017, 27(7): 1604414.

[88] Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications [J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291.

[89] Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging [J]. Nano Letters, 2014, 14(11): 6414-6417.

[90] Lee D, Choi Y, Hwang E, et al. Black phosphorus nonvolatile transistor memory [J]. Nanoscale, 2016, 8(17): 9107-9112.

[91] Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.

[92] Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors [J]. Advanced Materials, 2015, 27(37): 5567-5572.

[93] Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11(4): 1995-2002.

[94] Guo W L, Dong Z, Xu Y J, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices [J]. Advanced Science, 2020, 7(5): 1902699.

[95] Khurgin J B. Two-dimensional exciton-polariton—Light guiding by transition metal dichalcogenide monolayers [J]. Optica, 2015, 2(8): 740-742.

[96] Guo Q S, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain [J]. Nano Letters, 2016, 16(7): 4648-4655.

[97] Liu H Q, Chen Z X, Chen X C, et al. Terahertz photodetector arrays based on a large scale MoSe2 monolayer [J]. Journal of Materials Chemistry C, 2016, 4(40): 9399-9404.

[98] Yoshimi R, Tsukazaki A, Kikutake K, et al. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor [J]. Nature Materials, 2014, 13(3): 253-257.

[99] Lawal A, Shaari A, Ahmed R, et al. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector [J]. Physica B: Condensed Matter, 2017, 520: 69-75.

[100] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions [J]. Physical Review Letters, 2007, 98(10): 106803.

[101] Yang J, Yu W Z, Pan Z H, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity [J]. Small, 2018, 14(37): e1802598.

[102] Zhou J, Xu H W, Shi Y L, et al. Terahertz driven reversible topological phase transition of monolayer transition metal dichalcogenides [J]. Advanced Science, 2021, 8(12): e2003832.

潘晓凯, 姜梦杰, 王东, 吕旭阳, 蓝诗琪, 卫英东, 何源, 郭书广, 陈平平, 王林, 陈效双, 陆卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217. PAN Xiaokai, JIANG Mengjie, WANG Dong, LYU Xuyang, LAN Shiqi, WEI Yingdong, HE Yuan, GUO Shuguang, CHEN Pingping, WANG Lin, CHEN Xiaoshuang, LU Wei. Application and frontier trend of infrared-terahertz photoelectric detector[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!