Frontiers of Optoelectronics, 2022, 15 (4): s12200, 网络出版: 2023-01-22  

Advanced functional nanofibers: strategies to improve performance and expand functions

Advanced functional nanofibers: strategies to improve performance and expand functions
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA
3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
4 State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
5 Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

[1] Xie, F., Wang, Y., Zhuo, L., Jia, F., Ning, D., Lu, Z.: Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl. Mater. Interfaces 12(50), 56499–56508 (2020)

[2] Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010)

[3] Wang, M., Li, D., Li, J., Li, S., Chen, Z., Yu, D.G., Liu, Z., Guo, J.Z.: Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 196, 109075 (2020)

[4] Wang, X., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)

[5] Nikfarjam, A., Hosseini, S., Salehifar, N.: Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl. Mater. Interfaces 9(18), 15662–15671 (2017)

[6] Yue, X., Yi, S., Wang, R., Zhang, Z., Qiu, S.: Well-controlled SrTiO3@ Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 47, 463–473 (2018)

[7] Wan, K., Wang, D., Wang, F., Li, H., Xu, J., Wang, X., Yang, J.: Hierarchical In2O3@ SnO2 core–shell nanofiber for high efficiency formaldehyde detection. ACS Appl. Mater. Interfaces 11(48), 45214–45225 (2019)

[8] Tomboc, G.M., Kim, H.: Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404 (2019)

[9] Choi, J., Chan, S., Joo, H., Yang, H., Ko, F.K.: Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photocatalyst for water treatment. Water Res. 101, 362–369 (2016)

[10] Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 80(293), 1455–1457 (2001)

[11] Chakrabarty, A., Raffy, G., Maity, M., Gartzia-Rivero, L., Marre, S., Aymonier, C., Maitra, U., Del Guerzo, A.: Nanofiber-directed anisotropic self-assembly of CdSe-CdS quantum rods for linearly polarized light emission evidenced by quantum rod orientation microscopy. Small 14(37), e1802311 (2018)

[12] Nanofibers, B., Simbrunner, C., Quochi, F., Hernandez-sosa, G., Oehzelt, M., Resel, R., Arndt, M., Saba, M., Mura, A., Bongiovanni, G., Sitter, H.: Organic-organic heteroepitaxy of red-,green-, and blue-emitting nanofiber. ACS Nano 2010(4), 6244–6250 (2010)

[13] Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., Zhu, Z.: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21(2), 444–448 (2011)

[14] Liao, X., Kahle, F.J., Liu, B., Bassler, H., Zhang, X., Kohler, A., Greiner, A.: Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 7(6), 1605–1612 (2020)

[15] Wang, Q., Schniepp, H.C.: Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7(11), 1364–1370 (2018)

[16] Yang, X., Li, L., Yang, D., Nie, J., Ma, G.: Electrospun core–shell fibrous 2D Scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv. Fiber Mater. 2(2), 105–117 (2020)

[17] Cui, T., Yu, J., Li, Q., Wang, C.F., Chen, S., Li, W., Wang, G.: Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), e2000982 (2020)

[18] Fei, L., Hu, Y., Li, X., Song, R., Sun, L., Huang, H., Gu, H., Chan, H.L.W., Wang, Y.: Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 7(6), 3665–3670 (2015)

[19] An, A.K., Guo, J., Lee, E.J., Jeong, S., Zhao, Y., Wang, Z., Leiknes, T.O.: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57–67 (2017)

[20] Ning, Y., Zhang, Z., Teng, F., Fang, X.: Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14(13), e1703754 (2018)

[21] Wang, Q., Jian, M., Wang, C., Zhang, Y.: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657 (2017)

[22] Zhang, R., Liu, C., Hsu, P.C., Zhang, C., Liu, N., Zhang, J., Lee, H.R., Lu, Y., Qiu, Y., Chu, S., Cui, Y.: Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 16(6), 3642–3649 (2016)

[23] Qin, R., Shao, G., Hou, J., Zheng, Z., Zhai, T., Li, H.: Onepot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci. Bull. (Beijing) 62(15), 1081–1088 (2017)

[24] Kaufman, J.J., Tao, G., Shabahang, S., Deng, D.S., Fink, Y., Abouraddy, A.F.: Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773 (2011)

[25] Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501 (2011)

[26] Deng, D.S., Orf, N.D., Abouraddy, A.F., Stolyarov, A.M., Joannopoulos, J.D., Stone, H.A., Fink, Y.: In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269 (2008)

[27] Zuo, F., Tan, D.H., Wang, Z., Jeung, S., Macosko, C.W., Bates, F.S.: Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2(4), 301–305 (2013)

[28] Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013)

[29] Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48, 3306–3316 (2007)

[30] Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010)

[31] Wang, D., Sun, G., Chiou, B.S.: A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 292(4), 407–414 (2007)

[32] Nakata, K., Fujii, K., Ohkoshi, Y., et al.: Poly(ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 28(6), 792–795 (2007)

[33] Cheng, K.C.K., Bedolla-Pantoja, M.A., Kim, Y.K., Gregory, J.V., Xie, F., De France, A., Hussal, C., Sun, K., Abbott, N.L., Lahann, J.: Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science 80(362), 804–808 (2018)

[34] Virji, S., Huang, J., Kaner, R.B., Weiller, B.H.: Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496 (2004)

[35] Wang, Y., Xu, S., Cheng, H., Liu, W., Chen, F., Liu, X., Liu, J., Chen, S., Hu, C.: Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method. Appl. Surf. Sci. 428, 315–321 (2018)

[36] Huang, J., Kaner, R.B.: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126(3), 851–855 (2004)

[37] Harfenist, S.A., Cambron, S.D., Nelson, E.W., Berry, S.M., Isham, A.W., Crain, M.M., Walsh, K.M., Keynton, R.S., Cohn, R.W.: Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett. 4(10), 1931–1937 (2004)

[38] Gu, F., Zhang, L., Yin, X., Tong, L.: Polymer single-nanowire optical sensors. Nanoscale Res Lett 4, 94 (2009)

[39] Wang, C., Kim, J., Kim, M., Lim, H., Zhang, M., You, J., Yun, J.H., Bando, Y., Li, J., Yamauchi, Y.: Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A Mater. Energy Sustain 7(22), 13743–13750 (2019)

[40] Hwang, I., Guan, Z., Cao, C., Tang, W., Chui, C.O., Li, X.: Nanoparticles suppress fluid instabilities in the thermal drawing of ultralong nanowires. Nat. Commun. 11(1), 5932 (2020)

[41] Li, D., Wang, Y., Xia, Y.: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3(8), 1167–1171 (2003)

[42] Marek, P., Senecal, K., Nida, D., Magnone, J., Senecal, A.: Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane. J. Nanobiotechnol 9(1), 48 (2011)

[43] Lin, M.F., Xiong, J., Wang, J., Parida, K., Lee, P.S.: Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018)

[44] Wu, J., Wang, N., Zhao, Y., Jiang, L.: Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A Mater. Energy Sustain. 1(25), 7290–7305 (2013)

[45] Frenot, A., Chronakis, I.S.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)

[46] Wen, X., Xiong, J., Lei, S., Wang, L., Qin, X.: Diameter refinement of electrospun nanofibers: from mechanism. Strategies to applications. Adv. Fiber Mater. (2022)

[47] Deng, Y., Lu, T., Cui, J., Keshari, S., Xiong, R., Huang, C.: Biobased electrospun nanofiber as building blocks for a novel ecofriendly air filtration membrane: a review. Separ. Purif. Tech. 277, 119623 (2021)

[48] Cao, X., Deng, J., Pan, K.: Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv. Fiber Mater. 2(2), 85–92 (2020)

[49] Chen, J., Pakdel, E., Xie, W., Sun, L., Xu, M., Liu, Q., Wang, D.: High-performance natural melanin/poly(vinyl alcohol-coethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2(2), 64–73 (2020)

[50] Arshad, S.N., Naraghi, M., Chasiotis, I.: Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719 (2011)

[51] Wang, L., Wu, Y., Guo, B., Ma, P.X.: Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9), 9167–9179 (2015)

[52] Yan, W., Richard, I., Kurtuldu, G., James, N.D., Schiavone, G., Squair, J.W., Nguyen-Dang, T., Das Gupta, T., Qu, Y., Cao, J.D., Ignatans, R., Lacour, S.P., Tileli, V., Courtine, G., Loffler, J.F., Sorin, F.: Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882 (2020)

[53] Hu, X., Zhang, X., Shen, X., Li, H.: Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem Plasma Process 34, 1129–1139 (2014)

[54] Huang, J., Kaner, R.B.: Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. 116(43), 5941–5945 (2004)

[55] Loscertales, I.G., Barrero, A., Márquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G.: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126(17), 5376–5377 (2004)

[56] Hasegawa, T., Mikuni, T.: Higher-order structural analysis of Nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J. Appl. Polym. Sci. 131, 40361 (2014)

[57] Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Ko, P.: In situ deposition of PLGA nano fibers via solution blow spinning. ACS Macro Lett. 3(3), 249 (2014)

[58] Ren, L., Ozisik, R., Kotha, S.P.: Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142 (2014)

[59] Rolandi, M., Rolandi, R.: Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222 (2014)

[60] Song, J., Zhang, B., Lu, Z., Xin, Z., Liu, T., Wei, W., Zia, Q., Pan, K., Gong, R.H., Bian, L., Li, Y., Li, J.: Hierarchical porous poly (l-lactic acid) nano fi brous membrane for ultra fi ne particulate aerosol filtration. ACS Appl. Mater. Interfaces (2019)

[61] Im, J.S., Park, S.J., Kim, T.J., Kim, Y.H., Lee, Y.S.: The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid Interface Sci. 318(1), 42–49 (2008)

[62] Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., Zhang, Y.: Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)

[63] Liu, Q., Wang, Y., Dai, L., Yao, J.: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006 (2016)

[64] Lee, C.G., Javed, H., Zhang, D., Kim, J.H., Westerhoff, P., Li, Q., Alvarez, P.J.J.: Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52(7), 4285–4293 (2018)

[65] Ma, W., Li, Y., Zhang, M., Gao, S., Cui, J., Huang, C., Fu, G.: Biomimetic durable multifunctional self-cleaning nano fibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interfaces. 12(31), 34999–35010 (2020)

[66] Zhu, L.F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., Chang, M.W.: A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci. 137, 105002 (2019)

[67] Zhu, Y., Song, L., Song, N., Li, M., Wang, C., Lu, X.: Bifunctional and efficient CoS2-C@MoS2 core–shell nanofiber electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 7(3),2899–2905 (2019)

[68] Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417 (2017)

[69] Wang, K., Liu, X.K., Chen, X.H., Yu, D.G., Yang, Y.Y., Liu, P.: Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl. Mater. Interfaces 10(3), 2859–2867 (2018)

[70] Hwang, S.H., Kim, Y.K., Hong, S.H., Lim, S.K.: Cu/CuO@ZnO hollow nanofiber gas sensor: effect of hollow nanofiber structure and P-N junction on operating temperature and sensitivity. Sensors (Basel) 19(14), 1–11 (2019)

[71] Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011)

[72] Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G., Pan, A.: Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. (Beijing) 64(4), 261–269 (2019)

[73] Sun, F., Qi, H., Xie, Y., Ma, Q., He, W., Xu, D., Wang, G., Yu, W., Wang, T., Dong, X.: Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant. J. Alloys Compd. 830, 154673 (2020)

[74] Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R.: Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805 (2020)

[75] Gao, Y., Xiao, Z., Kong, D., Iqbal, R., Yang, Q.H., Zhi, L.: N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 64, 103879 (2019)

[76] Zhu, R., Chen, F., Wang, J., Song, Y., Cheng, J., Mao, M., Ma, H., Lu, J., Cheng, Y.: Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution (PMID:32296800)

[77] Liu, J., Yuan, H., Qiao, J., Feng, J., Xu, C., Wang, Z., Sun, W., Sun, K.: Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 5(33), 17216–17220 (2017)

[78] Li, S., Yin, J., Xu, L.: Batch fabrication and characterization of ZnO/PLGA/PCL nanofiber membranes for antibacterial materials. Fibers Polym. 23(5), 1225–1234 (2022)

[79] Zhang, M., Yang, J., Kang, Z., Wu, X., Tang, L., Qiang, Z., Zhang, D., Pan, X.: Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. J. Hazard. Mater. 404(Pt A), 124095 (2021)

[80] Shao, Z., Chen, Y., Jiang, J., Xiao, Y., Kang, G., Wang, X., Li, W., Zheng, G.: Multistage-split ultrafine fluffy nanofibrous membrane for high-efficiency antibacterial air filtration. ACS Appl. Mater. Interfaces 14(16), 18989–19001 (2022)

[81] Zupancic, S, Sinha-Ray, S., Sinha-Ray, S., Kristl, J., Yarin, A.L.: Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol. Pharm. 13(1), 295–305 (2016)

[82] Yao, Q., Cosme, J.G.L., Xu, T., Miszuk, J.M., Picciani, P.H.S., Fong, H., Sun, H.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115–127 (2017)

[83] Lobo, A.O., Afewerki, S., de Paula, M.M.M., Ghannadian, P., Marciano, F.R., Zhang, Y.S., Webster, T.J., Khademhosseini, A.: Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomed 13, 7891–7903 (2018)

[84] Sun, H.W., Zhang, H., Zhen, Q., Wang, S.F., Hu, J.J., Cui, J.Q., Qian, X.M.: Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. J. Polym. Res. 29(8), 1–10 (2022)

[85] Panomsuwan, G., Saito, N., Ishizaki, T.: Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metalfree cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(11), 6962–6971 (2016)

[86] Al-Hammadi, S.A., Al-Amer, A.M., Saleh, T.A.: Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions. Chem. Eng. J. 345, 242–251 (2018)

[87] Xu, T., Zheng, F., Chen, Z., Ding, Y., Liang, Z., Liu, Y., Zhu, Z., Fong, H.: Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chem. Eng. J. 360, 280–288 (2019)

[88] Choi, S.J., Kim, S.J., Cho, H.J., Jang, J.S., Lin, Y.M., Tuller, H.L., Rutledge, G.C., Kim, I.D.: WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7), 911–920 (2016)

[89] Wang, K., Li, J., Li, W., Wei, W., Zhang, H., Wang, L.: Highly active Co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv. Mater. Technol. 4, 1–8 (2018)

[90] Wang, Y., Górecki, R.P., Stamate, E., Norrman, K., Aili, D., Zuo, M., Guo, W., Hélix-Nielsen, C., Zhang, W.: Preparation of superhydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 9(1), 278–286 (2019)

[91] Cheng, H., Xiao, D., Tang, Y., Wang, B., Feng, X., Lu, M., Vancso, G.J., Sui, X.: Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9(17), e1901796 (2020)

[92] Chen, W.S., Hsieh, P.H., Yang, W.N., Fan-Jen, P.Z., Yang, M.L., Yeh, J.M., Wei, Y., Chin, T.Y., Chen-Yang, Y.W.: Chemically modified electrospun silica nanofibers for promoting growth and differentiation of neural stem cells. J. Mater. Chem. B Mater. Biol. Med. 2(9), 1205–1215 (2014)

[93] Saeed, K., Haider, S., Oh, T.J., Park, S.Y.: Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322(2), 400–405 (2008)

[94] Yazdi, M.G., Ivanic, M., Mohamed, A., Uheida, A.: Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 8(43), 24588–24598 (2018)

[95] Morillo Martín, D., Faccini, M., García, M.A., Amantia, D.: Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng. 6(1), 236–245 (2018)

[96] Zhao, R., Li, X., Sun, B., Shen, M., Tan, X., Ding, Y., Jiang, Z., Wang, C.: Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 268, 290–299 (2015)

[97] Meng, C., Xiao, Y., Wang, P., Zhang, L., Liu, Y., Tong, L.: Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 23(33), 3770–3774 (2011)

[98] Ma, W., Jiang, Z., Lu, T., Xiong, R., Huang, C.: Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil / water separation and pressure sensing. Chem. Eng. J. 430, 132989 (2022)

[99] Deng, Y., Lu, T., Cui, J., Ma, W., Qu, Q., Zhang, X., Zhang, Y., Zhu, M., Xiong, R., Huang, C.: Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separ. Purif. Tech. 294, 121093 (2022)

[100] Ma, W., Zhang, M., Liu, Z., Kang, M., Huang, C., Fu, G.: Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J. Membr. Sci. 570–571, 303–313 (2019)

[101] Zhu, J., Sun, H., Xu, Y., Liu, T., Hou, T., Liu, L., Li, Y., Lin, T., Xin, Y.: Preparation of PVDF/TiO2 nanofibers with enhanced piezoelectric properties for geophone applications. Smart Mater. Struct. 28(8), 085006 (2019)

[102] Cao, X., Zhu, Y., Shi, T., Lei, J., Tang, X., Zhang, D.: Electrospinning preparation of La-doped SnO2 hollow nanofibers: an improvement of their gas sensing properties. J. Nanosci. Nanotechnol. 18(10), 6965–6970 (2018)

[103] Shi, C., Zhu, Y., Xu, Q., Tao, X., Kong, C.: A study of ordered La-doped SnO2 nanofibers in light of their length and gas sensitivity. Phys. E. 124, 114294 (2020)

[104] Yao, Z., Xia, M., Xiong, Z., Wu, Y., Cheng, P., Cheng, Q., Xu, J., Wang, D., Liu, K.: A hierarchical structure of flower-like zinc oxide and poly(vinyl alcohol-co-ethylene) nanofiber hybrid membranes for high-performance air filters. ACS Omega 7(3), 3030–3036 (2022)

[105] Katta, P., Alessandro, M., Ramsier, R.D., Chase, G.G.: Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4(11), 2215–2218 (2004)

[106] Fennessey, S.F., Farris, R.J.: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf.) 45(12), 4217–4225 (2004)

[107] Lunni, D., Cianchetti, M., Filippeschi, C., Sinibaldi, E., Mazzolai, B.: Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7(4), 1–8 (2020)

[108] Li, D., Wang, Y., Xia, Y.: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366 (2004)

[109] Liu, J., Chen, G., Gao, H., Zhang, L., Ma, S., Liang, J., Fong, H.: Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon 50(3), 1262–1270 (2012)

[110] Lee, J., Choi, J., Cho, A.E., Kumar, S., Jang, S.S., Kim, Y.H.: Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons. Adv. Funct. Mater. 28(15), 1–7 (2018)

[111] Ma, S., Liu, J., Liu, Q., Liang, J., Zhao, Y., Fong, H.: Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des. 95, 387–397 (2016)

[112] Kim, D.W., Kim, C.H., Yang, C.M., Ahn, S., Kim, Y.H., Hong, S.K., Kim, K.S., Hwang, J.Y., Choi, G.B., Kim, Y.A., Yang, K.S.: Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615 (2019)

[113] Zhang, B., Kang, F., Tarascon, J.M., Kim, J.K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016)

[114] Li, W.T., Zhang, X.D., Guo, X.: Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators B Chem. 244, 509–521 (2017)

[115] Cai, J., Chawla, S., Naraghi, M.: Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 109, 813–822 (2016)

[116] Song, Y.N., Lei, M.Q., Deng, L.F., Lei, J., Li, Z.M.: Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2(11), 4379–4386 (2020)

[117] Kong, L., Fu, X., Fan, X., Wang, Y., Qi, S., Wu, D., Tian, G., Zhong, W.H.: A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium-sulfur batteries. Nanoscale 11(39), 18090–18098 (2019)

[118] Ahmed Babar, A., Zhao, X., Wang, X., Yu, J., Ding, B.: One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J. Colloid Interface Sci. 577, 207–216 (2020)

[119] Wang, Z., Ma, Q., Dong, X., Li, D., Xi, X., Yu, W., Wang, J., Liu, G.: Novel electrospun dual-layered composite nanofibrous membrane endowed with electricity-magnetism bifunctionality at one layer and photoluminescence at the other layer. ACS Appl. Mater. Interfaces 8(39), 26226–26234 (2016)

[120] Oh, Y.S., Jung, G.Y., Kim, J.H., Kim, J.H., Kim, S.H., Kwak, S.K., Lee, S.Y.: Janus-faced, dual-conductive/chemically active battery separator membranes. Adv. Funct. Mater. 26(39), 7074–7083 (2016)

[121] Liang, C., He, J., Zhang, Y., Zhang, W., Liu, C., Ma, X., Liu, Y., Gu, J.: MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022)

[122] Rodríguez-Fabià, S., Chinga-Carrasco, G.: Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling. J. Bioresour. Bioprod. 7(3), 161–172 (2022)

[123] Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y., Xiao, H.: Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5(1), 1–15 (2020)

[124] Kelly, T.L., Gao, T., Sailor, M.J.: Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv. Mater. 23(15), 1776–1781 (2011)

[125] Zhang, J., Yan, Z., Ouyang, J., Yang, H., Chen, D.: Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red. Appl. Clay Sci. 157, 76–85 (2018)

Xinyu Chen, Honghao Cao, 5, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou. Advanced functional nanofibers: strategies to improve performance and expand functions[J]. Frontiers of Optoelectronics, 2022, 15(4): s12200. Xinyu Chen, Honghao Cao, 5, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou. Advanced functional nanofibers: strategies to improve performance and expand functions[J]. Frontiers of Optoelectronics, 2022, 15(4): s12200.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。