人工晶体学报, 2023, 52 (3): 380, 网络出版: 2023-04-13  

柔性无机铁电薄膜的制备及其在存储器领域应用研究进展

Research Progress on Preparation of Flexible Inorganic Ferroelectric Thin Film and Its Application in Memory Field
作者单位
中国电子科技南湖研究院, 嘉兴 314000
摘要
与传统硅基电子相比, 柔性电子因其独特的便携性、折叠卷曲性和生物相容性被广泛研究。柔性存储器作为柔性电子重要分支, 在可穿戴设备、智慧医疗、电子皮肤等领域展现出良好的应用前景。同时随着5G、人工智能、物联网等新一代信息技术深入应用, 市场对高密度、非易失、超低功耗柔性存储器的需求持续释放, 催生了柔性铁电存储器件的研究热潮。本文综述了近年来柔性无机铁电薄膜的制备及其在存储器领域应用进展。首先介绍了柔性铁电薄膜制造技术的发展情况, 包括柔性基板上的范德瓦耳斯异质外延、刚性基板上的化学蚀刻分层、新型二维(2D)铁电材料生长等, 然后介绍了基于无机铁电薄膜的柔性存储器的研究进展, 最后对柔性铁电存储器的未来发展进行了展望。
Abstract
Compared to conventional silicon-based electronics, flexible electronic devices have been extensively studied for their unique advantages of distinguished portability, conformal contact characteristics, and human-friendly interfaces. As an important branch of flexible electronics, flexible memory has shown good application prospects in wearable devices, smart medical care, electronic skin and other fields. At the same time, with the in-depth application of 5G, artificial intelligence, the internet of things and other new generation of information technologies, the market demand for high density, non volatile, ultra-low power consumption of flexible memory continues to release, giving birth to the research boom of flexible ferroelectric memory devices. Herein, the preparation of flexible ferroelectric films and the progress of their application in memory field are reviewed. Prevailing methods for preparing flexible ferroelectric films including the van der Waals heteroepitaxy on flexible substrate, delamination of the ferroelectric films on rigid substrate by chemical etching techniques, and growth of novel 2D ferroelectric materials are summarized. The research progress of flexible ferroelectric devices applied to memories are also be discussed. Finally, the challenges and prospects of flexible ferroelectric devices in the future are briefly proposed.
参考文献

[1] LIU X, WEI Y, QIU Y Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring[J]. Micromachines, 2021, 12(6): 695.

[2] NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.

[3] ZHANG Z L, LI H S, MILLER R, et al. Freestanding organic charge-transfer conformal electronics[J]. Nano Letters, 2018, 18(7): 4346-4354.

[4] CHEN X Z, SHI S Y, SHI G Y, et al. Observation of the antiferromagnetic spin Hall effect[J]. Nature Materials, 2021, 20(6): 800-804.

[5] KOMA A. Van der Waals epitaxy for highly lattice-mismatched systems[J]. Journal of Crystal Growth, 1999, 201/202: 236-241.

[6] KOMA A. Summary abstract: fabrication of ultrathin heterostructures with van der waals epitaxy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1985, 3(2): 724.

[7] YEN M, BITLA Y, CHU Y H. Van der waals heteroepitaxy on muscovite[J]. Materials Chemistry and Physics, 2019, 234: 185-195.

[8] CHANG L, YOU L, WANG J L. The path to flexible ferroelectrics: approaches and progress[J]. Japanese Journal of Applied Physics, 2018, 57(9): 0902A3.

[9] CHU Y H. Van der waals oxide heteroepitaxy[J]. Npj Quantum Materials, 2017, 2: 67.

[10] HAN Y L, FANG Y W, YANG Z Z, et al. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110)LaAlO3/SrTiO3 interfaces[J]. Physical Review B, 2015, 92(11): 115304.

[11] JIANG J, BITLA Y, HUANG C W, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy[J]. Science Advances, 2017, 3(6): e1700121.

[12] YANG Y X, YUAN G L, YAN Z B, et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film[J]. Advanced Materials, 2017, 29(26): 1700425.

[13] AMRILLAH T, BITLA Y, SHIN K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der Waals epitaxy[J]. ACS Nano, 2017, 11(6): 6122-6130.

[14] SUN H Y, LUO Z, ZHAO L T, et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition[J]. ACS Applied Electronic Materials, 2020, 2(4): 1081-1089.

[15] SAIKI K, UENO K, SHIMADA T, et al. Application of van der Waals epitaxy to highly heterogeneous systems[J]. Journal of Crystal Growth, 1989, 95(1/2/3/4): 603-606.

[16] BAKAUL S R, SERRAO C R, LEE O, et al. High speed epitaxial perovskite memory on flexible substrates[J]. Advanced Materials, 2017, 29(11): 1605699.

[17] KIM J H, GRISHIN A M. Free-standing epitaxial La1-x(Sr, Ca)xMnO3 membrane on Si for uncooled infrared microbolometer[J]. Applied Physics Letters, 2005, 87(3): 033502.

[18] TSAKALAKOS L, SANDS T. Epitaxial ferroelectric (Pb, La)(Zr, Ti)O3 thin films on stainless steel by excimer laser liftoff[J]. Applied Physics Letters, 2000, 76(2): 227-229.

[19] GAN Q, RAO R A, EOM C B, et al. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films[J]. Applied Physics Letters, 1998, 72(8): 978-980.

[20] BAKAUL S R, SERRAO C R, LEE M, et al. Single crystal functional oxides on silicon[J]. Nature Communications, 2016, 7: 10547.

[21] BAKAUL S R, SERRAO C R, LEE O, et al. High speed epitaxial perovskite memory on flexible substrates[J]. Advanced Materials, 2017, 29(11): 1605699.

[22] SHEN L K, WU L, SHENG Q, et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics[J]. Advanced Materials, 2017, 29(33): 1702411.

[23] LU D, BAEK D J, HONG S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers[J]. Nature Materials, 2016, 15(12): 1255-1260.

[24] BAEK D J, LU D, HIKITA Y, et al. Mapping cation diffusion through lattice defects in epitaxial oxide thin films on the water-soluble buffer layer Sr3Al2O6 using atomic resolution electron microscopy[J]. APL Materials, 2017, 5(9): 096108.

[25] JI D X, CAI S H, PAUDEL T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit[J]. Nature, 2019, 570(7759): 87-90.

[26] DONG G H, LI S Z, YAO M T, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation[J]. Science, 2019, 366(6464): 475-479.

[27] LUO Z D, PETERS J J P, SANCHEZ A M, et al. Flexible memristors based on single-crystalline ferroelectric tunnel junctions[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23313-23319.

[28] GUO R, YOU L, LIN W N, et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect[J]. Nature Communications, 2020, 11: 2571.

[29] ZHAO Z, ABDELSAMIE A, GUO R, et al. Flexible artificial synapse based on single-crystalline BiFeO3 thin film[J]. Nano Research, 2022, 15(3): 2682-2688.

[30] OSADA M, SASAKI T. The rise of 2D dielectrics/ferroelectrics[J]. APL Materials, 2019, 7(12): 120902.

[31] BELIANINOV A, HE Q, DZIAUGYS A, et al. CuInP2S6 room temperature layered ferroelectric[J]. Nano Letters, 2015, 15(6): 3808-3814.

[32] LIU F C, YOU L, SEYLER K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes[J]. Nature Communications, 2016, 7: 12357.

[33] ABRAHAMS S C. Systematic prediction of new ferroelectrics on the basis of structure[J]. Ferroelectrics, 1990, 104(1): 37-50.

[34] DING W J, ZHU J B, WANG Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other Ⅲ2-Ⅵ3 van der Waals materials[J]. Nature Communications, 2017, 8: 14956.

[35] ZHOU Y, WU D, ZHU Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes[J]. Nano Letters, 2017, 17(9): 5508-5513.

[36] FEI Z Y, ZHAO W J, PALOMAKI T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560(7718): 336-339.

[37] XIAO J, WANG Y, WANG H, et al. Berry curvature memory through electrically driven stacking transitions[J]. Nature Physics, 2020, 16(10): 1028-1034.

[38] YASUDA K, WANG X R, WATANABE K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride[J]. Science, 2021, 372(6549): 1458-1492.

[39] VIZNER STERN M, WASCHITZ Y, CAO W, et al. Interfacial ferroelectricity by van der Waals sliding[J]. Science, 2021, 372(6549): 1462-1466.

[40] MIKOLAJICK T, SLESAZECK S, MULAOSMANOVIC H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications[J]. Journal of Applied Physics, 2021, 129(10): 100901.

[41] MULAOSMANOVIC H, BREYER E T, DNKEL S, et al. Ferroelectric field-effect transistors based on HfO2: a review[J]. Nanotechnology, 2021, 32(50): 502002.

[42] DE S, LU D D, LE H H, et al. Ultra-low power robust 3bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-In-memory technology[C]//2021 Symposium on VLSI Technology. June 13-19, 2021, Kyoto, Japan. IEEE, 2021: 1-2.

[43] LEE W, KAHYA O, TOH C T, et al. Flexible graphene-PZT ferroelectric nonvolatile memory[J]. Nanotechnology, 2013, 24(47): 475202.

[44] GHONEIM M T, HUSSAIN M M. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric[J]. Applied Physics Letters, 2015, 107(5): 052904.

[45] YANG C H, HAN Y J, QIAN J, et al. Flexible, temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory[J]. Advanced Electronic Materials, 2019, 5(10): 1900443.

[46] SU L S, LU X B, CHEN L, et al. Flexible, fatigue-free, and large-scale Bi3.25La0.75Ti3O12 ferroelectric memories[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21428-21433.

[47] GAO H, YANG Y X, WANG Y J, et al. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35169-35176.

[48] YANG C H, HAN Y J, QIAN J, et al. Flexible, temperature-resistant, and fatigue-free ferroelectric memory based on Bi(Fe0.93Mn0.05Ti0.02)O3 thin film[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12647-12655.

[49] SUN H Y, LUO Z, LIU C C, et al. A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing[J]. Journal of Materiomics, 2022, 8(1): 144-149.

[50] MLLER J, POLAKOWSKI P, MUELLER S, et al. Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects[J]. ECS Journal of Solid State Science and Technology, 2015, 4(5): N30-N35.

[51] JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509.

[52] MLLER J, YURCHUK E, SCHLSSER T, et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG[C]//2012 Symposium on VLSI Technology (VLSIT). June 12-14, 2012, Honolulu, HI, USA. IEEE, 2012: 25-26.

[53] SAKAI S, ILANGOVAN R, TAKAHASHI M. Pt/SrBi2Ta2O9/Hf-Al-O/Si field-effect-transistor with long retention using unsaturated ferroelectric polarization switching[J]. Japanese Journal of Applied Physics, 2004, 43(11B): 7876-7878.

[54] MIKOLAJICK T, SCHROEDER U, SLESAZECK S. The past, the present, and the future of ferroelectric memories[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1434-1443.

[55] BSCKE T S, TEICHERT S, BRUHAUS D, et al. Phase transitions in ferroelectric silicon doped hafnium oxide[J]. Applied Physics Letters, 2011, 99(11): 112904.

[56] SAKAI S, ILANGOVAN R. Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance[J]. IEEE Electron Device Letters, 2004, 25(6): 369-371.

[57] MULLER J, BOSCKE T S, SCHRODER U, et al. Nanosecond polarization switching and long retention in a novel MFIS-FET based on ferroelectric HfO2[J]. IEEE Electron Device Letters, 2012, 33(2): 185-187.

[58] FLORENT K, PESIC M, SUBIRATS A, et al. Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory[C]//2018 IEEE International Electron Devices Meeting (IEDM). December 1-5, 2018, San Francisco, CA, USA. IEEE, 2019: 2.5.1-2.5.4.

[59] XIAO W W, LIU C, PENG Y, et al. Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers[J]. IEEE Electron Device Letters, 2019, 40(5): 714-717.

[60] CHEN L, WANG L, PENG Y, et al. A van der waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide[J]. Advanced Electronic Materials, 2020, 6(6): 2000057.

[61] XIAO W W, LIU C, PENG Y, et al. Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications[J]. ACS Applied Electronic Materials, 2019, 1(6): 919-927.

戚佳斌, 谢欣瑜, 李忠贤. 柔性无机铁电薄膜的制备及其在存储器领域应用研究进展[J]. 人工晶体学报, 2023, 52(3): 380. QI Jiabin, XIE Xinyu, LEE ChoongHyun. Research Progress on Preparation of Flexible Inorganic Ferroelectric Thin Film and Its Application in Memory Field[J]. Journal of Synthetic Crystals, 2023, 52(3): 380.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!