激光技术, 2023, 47 (2): 253, 网络出版: 2023-04-12   

不同冷却方式对激光加工CFRP的影响研究

Research on effect of laser machining of CFRP with different cooling methods
作者单位
桂林电子科技大学 机电工程学院 广西制造系统与先进制造技术重点实验室, 桂林 541004
摘要
为了探索不同冷却方式对激光加工的影响, 采用水、气体以及水气复合3种不同冷却方式辅助激光加工碳纤维复合材料进行了对比研究, 同时采用单因素实验研究了不同工艺条件对加工质量的影响, 并分析了作用机理。结果表明, 在3种冷却方式下, 热影响区、槽深均随着功率、频率的降低而降低, 随着扫描速率的增加而降低; 在相同工艺参数下, 水气复合辅助激光加工产生的热影响区最小, 气体辅助激光加工产生的热影响区次之, 水辅助激光加工产生的热影响区最大; 当激光功率为2250 W、频率为1200 Hz、速率为120 mm/s时, 水、气体以及水气复合 3种不同冷却方式的热影响区分别为378 μm, 283 μm, 196 μm, 槽深分别为401 μm, 789 μm, 647 μm; 采用水气复合辅助激光加工可以在加工过程中实现较好的冷热平衡, 获得最好的加工质量。该研究为更好地实现碳纤维复合材料低损伤加工提供了参考。
Abstract
In order to explore the influence of different cooling methods on laser machining, three different cooling methods of water, gas, and gas-water composite were used to assist laser processing of carbon fiber reinforced plastics. At the same time, the effect of different processing conditions on machining quality was studied by a single factor experiment, and the mechanism of different cooling methods was analyzed. The results show that the heated affected zone (HAZ) and groove depth decrease with the decrease of power and frequency and decrease with the increase of velocity. Under the same process parameters, the HAZ produced by gas-water-assisted laser processing is the smallest, followed by gas-assisted laser processing and the largest by water-assisted laser processing. When the laser power is 2250 W, the frequency is 1200 Hz, and the speed is 120 mm/s, the HAZ of water, gas, and water-gas composite cooling modes are 378 μm, 283 μm, 196 μm, respectively, and the groove depth is 401 μm, 789 μm, 647 μm, respectively. It can be seen from the comprehensive comparison that gas-water-assisted laser machining can achieve a better balance between heat and cold and obtain the best processing quality. This study provides a reference for better realization of low-damage machining of carbon fiber reinforced plastics.
参考文献

[1] BAO J W, ZHONG X Y, ZHANG D J, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness re-sin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48(8):33-48(in Chinese).

[2] LUO Y F. Latest application progress of high-performance fiber to new-generation vehicle[J]. China Textile Leader, 2014(11):50-54 (in Chinese).

[3] Ll Ch R, GAO C, SHI P Ch, et al. Multi-scale interface simulation research and development of fiber reinforced resin composites[J]. Composites Science and Engineering, 2020(11): 116-122(in Ch-inese).

[4] BAI D Sh, CHEN W Y, CHEN X M. Research advances in hole making technology of carbon fiber reinforced plastics/light alloy laminated structure[J].Aeronautical Manufacturing Technology, 2022, 65(9): 82-88(in Chinese).

[5] PHAPALE K, SINGH R, SINGH R. Comparative assessment of delamination control techniques in conventional drilling of CFRP[J]. Procedia Manufacturing, 2020, 48(C):123-130.

[6] PHAPALE K, SINGH R, PATIL S, et al. Delamination characterization and comparative assessment of delamination control techniques in abrasive water jet drilling of CFRP[C]// 44th North American Ma-nufacturing Research Conference. Amsterdam, The Netherlands: Elsevier Science, 2016:521-535.

[7] MORKAVUK S, KKL U, BAGˇCI M, et al. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study[J]. Composites Part B: Engineering, 2018, 147:1-11.

[8] KAKINUMA Y, ISHIDA T, KOIKE R, et al. Ultrafast feed drilling of carbon fiber-reinforced thermoplastics[C]//15th Machining Innovations Conference for Aerospace Industry .Amsterdam, The Netherlands: Elsevier Science, 2015:91-95.

[9] CHEN G Y, TAO N R, LI M Q, et al. Research progress of laser drilling technology for carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1398-1413 (in Chinese).

[10] CHEN Q L, HUANG Sh J, ZHANG H Ch. Status and prospect of application of laser technology in the processing of materal[J]. Machine Tool & Hydraulics, 2006(8):221-223 (in Chinese).

[11] CHEN B, WAN H, MU J Y, et al. Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser[J]. High Power Laser and Particle Beams, 2008, 20(4):547-552(in Chinese).

[12] LI Y Ch, CAI M, MAO Zh, et al. Study on thermal damage morphology in laser processing of CFRP[J]. Applied Laser, 2020, 40(4):691-696(in Chinese).

[13] STOCK J W, ZAEH M F, SPAETH J P. Remote laser cutting of CFRP: Influence of the edge quality on fatigue strength[J]. Processings of the SPIE, 2014:8963:89630T.

[14] HUA Y Q, XIAO T, XUE Q, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5):565-570(in Chinese).

[15] NEGARESTANI R, LI L, SEZER H K, et al. Nano-second pulsed DPSS Nd:YAG laser cutting of CFRP composites with mixed reactive and inert gases[J].The International Journal of Advanced Ma-nufacturing Technology, 2010, 49(5/8):533-566.

[16] TAN X H, WANG W, SHAN J G, et al. Numerical simulation on dynamic performance of assistant gas during laser cutting process[J]. Transactions of the China Welding Institution, 2012, 33(5):25-28 (in Chinese).

[17] WEN P, WANG W, TAN X H, et al. Numerical simulation of effect of laser power and assistant gas on laser cutting ability[J]. Transactions of the China Welding Institution, 2013, 34(4):57-60 (in Chinese).

[18] ZHANG Ch, YUAN G F, CONG Q D, et al. Study of the water jet assisted laser cutting carbon fiber reinforced plastic (CFRP) composites[J]. Laser Journal, 2018, 39(2):68-71 (in Chinese).

[19] ZHANG Ch, YUAN G F, CONG Q D, et al. The comparative study on the morphology of water jet assisted laser cutting and laser direct cutting carbon fiber reinforced plastic composites[C/OL].(2017-04)[2022-03-01].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGVE201704001043&DbName=CPFD2018 (in Ch-inese).

[20] VIBOON T, KETSADA K, QI H. Investigation into laser machining of carbon fiber reinforced plastic in a flowing water layer[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9/12):3629-3645.

张炳涛, 周辽, 焦辉, 黄平, 张光辉, 黄宇星, 周嘉, 龙芋宏. 不同冷却方式对激光加工CFRP的影响研究[J]. 激光技术, 2023, 47(2): 253. ZHANG Bingtao, ZHOU Liao, JIAO Hui, HUANG Ping, ZHANG Guanghui, HUANG Yuxing, ZHOU Jia, LONG Yuhong. Research on effect of laser machining of CFRP with different cooling methods[J]. Laser Technology, 2023, 47(2): 253.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!