无机材料学报, 2022, 37 (12): 1295, 网络出版: 2023-01-12  

莫来石/氧化铝预应力涂层增强氧化铝的弯曲强度和抗热震性能

Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating
作者单位
摘要
在陶瓷表面引入含压应力的涂层是一种有效的增强技术。本研究将氧化铝和石英粉混合浆料涂覆在预烧后的氧化铝坯体上, 无压共烧原位合成了热膨胀系数较低的莫来石-氧化铝涂层。利用降温过程中涂层内形成的残余压应力实现了氧化铝陶瓷的预应力强化。结果表明:随着涂层中石英掺量增加, 预应力氧化铝的强度出现先增大后减小的趋势; 当涂层中掺入石英的质量分数为15%时, 预应力增强效果最好, 涂层与基体界面结合紧密, 预应力氧化铝陶瓷的弯曲强度达到(549.44±27.2) MPa, 比普通氧化铝的强度提高了37.19%; 当涂层中掺入石英的质量分数增大到15%以上, 由于烧结收缩不匹配反而引起强度下降; 这种预应力增强效果会随着温度升高逐渐减弱, 当测试温度达到并超过1000 ℃时, 预应力氧化铝和普通氧化铝会具有大致相等的抗弯强度。由于表层压应力的存在, 预应力氧化铝还展现出更好的抗热震性能和损伤耐受性。
Abstract
It is an effective strengthened technique to introduce a coating containing compressive stress on the surface of ceramic. In this work, the mixed slurry of alumina and quartz powder was coated on the pre-sintered alumina body, then the mullite-alumina coating with lower thermal expansion coefficient was synthesized in-situ after pressureless co-sintering. The pre-stressed strengthening of alumina was achieved by the residual compressive stress formed in the coating during the cooling process. The results indicate that, with the increase of the doping content of quartz in the coating, the flexural strength of pre-stressed alumina increases firstly and then decreases. The flexural strength of specimen realizes the highest value when the doping mass fraction of quartz is 15%, and the interface between the coating and the substrate bonds tightly. Under this condition, the flexural strength of the pre-stressed alumina ceramic is (549.44±27.2) MPa, which is 37.19% higher than that of the common alumina. When the doping mass fraction of quartz is higher than 15%, the flexural strength decreases due to the shrinkage stress mismatch in the sintering process. The effect of prestress enhancement weakens gradually with the increase of temperature. As the testing temperature reaches and exceeds 1000 ℃, pre-stressed alumina and common alumina possess approximately equal flexural strength. Pre-stressed alumina also exhibits better thermal shock resistance and damage tolerance due to the compressive stress formed in the coating

陶瓷断裂常起源于表面微缺陷积聚成的微裂纹, 断裂过程中极限应变小, 导致陶瓷材料的强度及断裂韧性比较低。尽管在陶瓷或构件表层形成压应力是一种有效的增强增韧方法, 但仅在钢化玻璃[1-2]、层状陶瓷[3-4]中得到了较多的应用。表层压应力可以增强材料的断裂阻力和疲劳阻抗, 从而提高其强度和韧性。层状陶瓷就常通过表层强界面形成的残余压应力来实现材料的增强增韧, Lakshminarayanan等[5]研究了表层残余压应力对层状陶瓷复合材料断裂韧性的影响, 发现通过在外层引入残余压应力可显著提高层状陶瓷的韧性。

Bao等[6-8]提出了一种预应力陶瓷的简单制备技术, 通过在陶瓷坯体表面镀上一层热膨胀系数(CTE)较低的涂层, 再通过共同烧结制备出具有压应力的表面涂层。这种方法省略了层状陶瓷复杂的制备过程, 在普通的陶瓷表面涂覆一个有压应力的表层, 从而达到增强增韧的效果。表层涂有氧化铝的预应力氧化锆陶瓷的弯曲强度可达到1330 MPa, 相比单一氧化锆陶瓷提高了45%。这种预应力涂层增强陶瓷的方法使研究者可以进行涂层设计和组合材料优化, 使之可以运用于安全系数要求较高的领域。

基于预应力涂层设计的准则[8], 本实验拟将石英粉和氧化铝混合浆料涂敷在预烧后的氧化铝坯体上, 无压共烧后在氧化铝表面原位合成莫来石-氧化铝预应力涂层。这种莫来石-氧化铝涂层具有以下优点: (1)高温原位反应合成的莫来石-氧化铝复相涂层与氧化铝基体的烧结匹配度良好; (2)石英和氧化铝高温合成反应活性大[9], 与氧化铝具有相近的烧结致密化温度[10]; (3)莫来石的热膨胀系数(CTE: (4~5.5)×10-6 K-1)[11-12]低于氧化铝的热膨胀系数(CTE: 8.5×10-6 K-1)[13], 在降温过程中表面涂层内会产生残余压应力。涂层中的残余压应力会提高材料所能承受的断裂应力, 从而达到预应力增强氧化铝的效果。本工作研究了不同石英掺量对涂层物相、热膨胀系数和弹性模量的影响, 对比了预应力氧化铝和氧化铝陶瓷的高温弯曲强度以及热震后的剩余强度, 阐述了预应力氧化铝的强度变化规律和增强机理。

1 实验方法

1.1 材料制备

涂层浆料制备:采用酒精为溶剂, 将质量分数为5%、10%、15%、20%、25%、30%的石英(D50= 3 μm, SiO2≥99.40%, 汇丰新材料有限公司)分别与氧化铝(D50=400 nm, 阿泰欧法铝业有限公司)混合后, 加入适量的聚乙烯醇缩丁醛(黏结剂)和蓖麻油(分散剂), 转移至行星球磨机(YXQM-1L, MITR)中球磨分散5 h(转速为300 r/min)获得。

氧化铝坯体制备:将上述氧化铝粉体造粒后, 在60 MPa压力下干压成型, 再通过300 MPa冷等静压后1000 ℃预烧获得。

预应力复合体制备:将上述配制好的石英-氧化铝浆料刷涂在加工后的氧化铝预烧坯体上下表面, 通过刷涂次数控制涂层厚度。干燥后, 将复合后的坯体放入高温空气炉中1550 ℃无压烧结, 烧结收缩后的试样尺寸约为1.5 mm×4 mm×30 mm, 上下两面涂层厚度约为25 μm, 如图1所示。以 (C5~ C30)-A表示不同石英掺量制备的预应力氧化铝复合体。

图 1. 预应力氧化铝陶瓷设计示意图

Fig. 1. Schematic illustration of pre-stressed Al2O3

下载图片 查看所有图片

1.2 测试表征

采用微机控制电子万能试验机(Model C45, MTS)测试样品的三点弯曲强度(试样数量为6个), 跨距为15 mm, 加载速率为0.5 mm/min; 研究了室温至1200 ℃范围内氧化铝基体及复合体强度变化规律, 每个温度点测3个试样。参照ASTMC1525-18标准评价样品抗热震性能, 在每个设定的温度点保温半小时后立即放入室温的水槽中, 晾干后在室温下测量其剩余三点弯曲强度, 取5个单独测量值计算平均值。采用脉冲激励法(JC/T 2172-2013)测试氧化铝基体及复合体的弹性模量, 采用热膨胀仪(DIL 402C, 德国林赛斯公司)测量基体与复合体的热膨胀系数。

采用X射线衍射仪(D8 Advance Diffractometer, 德国布鲁克公司)分析烧结涂层的晶相成分, 利用Rietveld全谱拟合方法[14]对涂层中莫来石和氧化铝的物相组成进行分析。通过光学显微镜(KEYENCE VHX-970F, 日本基恩士公司)观察经红墨水染色后的表面裂纹形貌, 通过配备EDS能谱扫描的冷场发射扫描电镜(S-4800, 日本日立集团)观察断口形貌。

在涂层和基体的界面上通常有两种应力, 即法向应力和剪切应力。界面剪切应力是涂层中残余应力的驱动力, 是从材料中点到两端不断增大的函数, 最大值在试样两端, 因此涂层和基体残余应力最大值在中点, 即ζ为0处。根据非均匀应变模型[15]计算残余应力, 剪切应力按公式(1)计算, 涂层和基体中的残余应力分别按公式(2)和公式(3)计算。

$\tau ={{\tau }_{0}}\cdot {{\xi }^{n}}(0<\xi <1,\xi =x/L)$ ${{\sigma }_{\text{c}}}=\frac{-(n+2)\Delta \alpha \cdot \Delta T\cdot {{E}_{\text{c}}}{{E}_{\text{s}}}{{h}_{\text{s}}}}{(n+1)({{E}_{\text{c}}}{{h}_{\text{c}}}+{{E}_{\text{s}}}{{h}_{\text{s}}})}(1-{{\xi }^{n+1}})$ ${{\sigma }_{\text{s}}}=\frac{(n+2)\Delta \alpha \cdot \Delta T\cdot {{E}_{\text{c}}}{{E}_{\text{s}}}{{h}_{\text{c}}}}{(n+1)({{E}_{\text{c}}}{{h}_{\text{c}}}+{{E}_{\text{s}}}{{h}_{\text{s}}})}(1-{{\xi }^{n+1}})$

其中, σ、E、Δα、ΔTh分别为残余应力、弹性模量、热膨胀系数差、温降范围和层厚度, 下脚标c, s分别代表复合体中的涂层和基体, n取8[15]

2 结果及讨论

2.1 涂层物相成分表征

对涂层材料高温烧结后进行XRD物相分析, 如图2(a)所示。氧化铝、石英高温原位反应产物主要是刚玉和莫来石混合物, 没有检测到明显的二氧化硅峰相, 说明石英在1550 ℃下与氧化铝完全反应。莫来石是Al2O3-SiO2二元体系中唯一稳定存在的固溶体, 化学式主要为3Al2O3·2SiO2。利用Rietveld法[14]定量分析所生成的莫来石和氧化铝物相的组成, 结果如图2(b)所示。随着石英掺量的增多, 与氧化铝高温原位反应生成的莫来石也逐渐增多, 当石英的质量分数为30%时, 其复相涂层的主要成分为莫来石和少量的氧化铝。

图 2. 不同石英含量制备的莫来石-氧化铝涂层材料物相分析

Fig. 2. Phase analyses of mullite-alumina coating materials fabricated with different mass fractions of quartz

下载图片 查看所有图片

2.2 预应力氧化铝室温强度及高温强度

图3为不同石英含量制备的预应力复合体室温弯曲强度, 从图中可以看出, 随着涂层原料中石英含量增加, 预应力氧化铝复合体的弯曲强度表现出先增大后下降的规律, 存在一个最优的平衡点。所设计的莫来石/氧化铝涂层与氧化铝基体产生明显的应力强化效果。当石英的质量分数为15%时, 预应力增强效果最好, 弯曲强度最大值为(549.44±27.2) MPa, 相较于纯氧化铝强度提高了37.19%。随着石英掺量进一步增大, 其弯曲强度快速下降。当石英掺量为30%时, 预应力氧化铝强度下降到(329.31±24.0) MPa, 相较于氧化铝陶瓷强度降低了17.78%。

图 3. 不同石英含量制备的预应力氧化铝室温弯曲强度

Fig. 3. Flexural strength at room temperature of pre-stressed Al2O3 fabricated with different mass fractions of quartz

下载图片 查看所有图片

对C15-A预应力陶瓷及氧化铝的高温弯曲强度进行测试, 结果如图4所示。随着试验温度升高, 预应力氧化铝复合体和氧化铝的强度都呈现下降趋势。在1000 ℃以下, 预应力氧化铝复合体的弯曲强度均超过氧化铝, 1000 ℃预应力复合体和氧化铝的强度接近, 弯曲强度保留率分别为59.74%和82.55%。Cai等[16]发现氧化铝、氧化铝-氧化锆层状陶瓷从烧结温度冷却至1200 ℃的过程中, 材料没有产生明显的残余应力, 表明弹性热膨胀失配导致的残余应力会在1200 ℃以上完全松弛。在高温下由于陶瓷的晶粒变形和晶界滑动[17], 弯曲模量和强度会降低[18], 其残余应力通常也会松弛甚至消失。与本次高温试验结果类似, 在1000 ℃以上没有明显的应力增强效果。因此, 选择1000 ℃为后续残余应力计算的临界温度差ΔT

图 4. C15-A预应力陶瓷高温下的弯曲强度

Fig. 4. Flexural strength of C15-A pre-stressed ceramics tested at different high temperatures

下载图片 查看所有图片

2.3 预应力氧化铝微观形貌

不同石英含量制备的预应力氧化铝断面形貌如图5所示, 可以看出, 复合体断裂主要表现为穿晶断裂。当石英粉含量较低时, 断面气孔的数量较多, 气孔尺寸较大, 致密度不高(如图5(a)所示)。随着石英含量增加, 与氧化铝高温原位反应烧结过程的石英玻璃相增多[19], 烧结后涂层的气孔数量减小, 与界面结合更紧密(如图5(b)所示)。

图 5. 预应力氧化铝((a) C10-A, (b) C25-A, (c) C15-A)断面扫描电镜照片, (d) C15-A的EDS分析

Fig. 5. Fracture section SEM images of pre-stressed alumina ((a) C10-A, (b) C25-A, (c) C15-A), (d) EDS analysis of C15-A

下载图片 查看所有图片

对C15-A界面进一步观察, 发现涂层和基体之间不存在裂缝或者界面滑移, 界面结合紧密, 但涂层越靠近界面孔隙越多(如图5(c)所示)。对C15-A断面EDS能谱面扫描显示, 除了涂层中存在较多的Si元素富集, 基体中也存在较多的Si元素(见图5(d))。这是由于涂层中的石英在高温下形成的玻璃相容易渗入到氧化铝基体中, 与基体发生反应, 使得界面相容性更好, 从而形成强界面。

图6为C30-A预应力氧化铝样品经红墨水染色后侧面微观图, 从图中可以观察到明显的裂纹, 说明C30-A预应力氧化铝在共烧后发生了破坏, 没有达到涂层预应力增强效果。

图 6. C30-A样品的侧面光学显微照片

Fig. 6. Optical micrograph of the side of C30-A sample

下载图片 查看所有图片

2.4 残余应力计算及优化设计准则

为进一步阐述室温强度的变化规律, 对降温过程热膨胀失配产生的残余应力进行计算。根据高温强度测试结果选择室温至1000 ℃为热膨胀系数和残余应力计算临界温度差, 测得基体热膨胀系数和复合体热膨胀系数后, 通过公式(4)计算得到涂层热膨胀系数[20]。采用脉冲激励法测得氧化铝及复合体的弹性模量后, 通过公式(5)获得涂层弹性模量[21]

${{\alpha }_{\text{c}}}=\bar{\alpha }-\frac{{{E}_{\text{s}}}{{h}_{\text{s}}}}{{{E}_{\text{c}}}{{h}_{\text{c}}}}({{\alpha }_{\text{s}}}-\bar{\alpha })$ ${{E}_{\text{c}}}=\frac{{{(1+2R)}^{3}}{{E}_{\text{f}}}-{{E}_{\text{s}}}}{8{{R}^{3}}+12{{R}^{2}}+6R}$

其中, α¯、αc、αs、Ef、Ec、Es、hc、hs、R分别为复合体热膨胀系数、涂层热膨胀系数、基体热膨胀系数、复合体弹性模量、涂层弹性模量、基体弹性模量、涂层厚度、基体厚度、涂层与基体的厚度比。

将测得的涂层及基体数据代入公式(2, 3), 计算得到涂层及基体残余应力, 结果如表1所示。结果表明:随着涂层与基体的热膨胀系数差Δα增大, 涂层、基体内的残余应力也逐渐增大, 再趋于稳定。由于界面并不是完全理想的强界面, 会存在一定的应力松弛, C15-A实际增强的强度会比计算结果低。

表 1. 不同石英含量制备预应力氧化铝的涂层和基体残余应力的计算结果

Table 1. Calculation of residual stresses of coatings and substrates in pre-stressed Al2O3 fabricated with different mass fractions of quartz

SampleEc/GPa Es/GPa αc/(×10-6, K-1) αs/(×10-6, K-1) hc/μm hs/μm ΔTσc/MPa σs/MPa
C5-A91.36380.116.697.585014501000 ℃-119.664.80
C10-A80.18380.116.067.585014501000 ℃-151.946.09
C15-A73.33380.115.337.585014501000 ℃-181.867.29
C20-A67.71380.115.047.585014501000 ℃-189.747.60
C25-A62.14380.114.727.585014501000 ℃-196.177.86
C30-A58.31380.114.417.585014501000 ℃-197.697.91

查看所有表

表1中计算结果可知, 不同石英含量制备的预应力复合体中, 由于降温过程热膨胀系数差异引起的基体拉应力(σs)远低于氧化铝的本征强度, 所以在烧结升温过程中的收缩不匹配是造成C30-A样品破坏的主要原因。随着石英掺量增大, 涂层材料与基体烧结不匹配也会逐渐增大。由于升温烧结过程中存在动态烧结应力以及涂层和基体之间的收缩不匹配应力, 拉应力区基体极易形成裂纹或裂缝状缺陷(如图7(a)), 特别是在基体孔隙或缺陷处的应力集中更易导致其拉伸应力的增加, 从而产生裂纹(如图7(b))。这些烧结不匹配产生的缺陷在降温过程中由于热膨胀不匹配更易进一步扩展形成更大的裂纹[22], 最终导致材料(C30-A)强度大幅下降。

图 7. C30-A样品的断面SEM照片

Fig. 7. Fracture section SEM images of C30-A sample

下载图片 查看所有图片

根据涂层残余应力计算公式(2), 以不同预应力氧化铝的弹性模量、热膨胀系数计算了涂层中的残余应力(σc)与基体/涂层厚度比(hs/hc)的理论关系, 如图8所示。结果表明, 涂层中的残余应力随hs/hc的增大而急剧增加, 当hs/hc>10后趋于稳定, 而实验制备的预应力氧化铝的hs/hc约为29, 已经达到理论最优化的条件。此外, 随着涂层中生成的莫来石含量逐渐增加, 涂层与基体热膨胀系数差Δα逐渐增大, 但涂层弹性模量Ec也会逐渐降低。

图 8. 不同预应力氧化铝涂层中残余压应力和基体与涂层厚度比之间的理论关系

Fig. 8. Theoretical relationship between residual compressive stress and substrate-to-coating thickness ratio in different pre- stressed aluminas

下载图片 查看所有图片

涂层残余应力与热膨胀系数差Δα正比、与涂层弹性模量Ec也存在正比关系。由于两者的竞争关系, 当石英含量大于20%时, 涂层残余应力计算结果增加已不明显。综上, 为实现一个高性价比的莫来石-氧化铝涂层增强氧化铝构件, 优化设计准则建议为:a)形成强界面且hs/hc>10; b) 相一致的烧结收缩匹配性; c) 涂层需要较高的弹性模量。

2.5 预应力氧化铝抗热震性能

图9为C15-A预应力氧化铝在不同温度热震后的剩余强度。通过预应力设计, 预应力氧化铝将剩余强度下降的临界温度从220 ℃提高到280 ℃, 展现出更好的抗热震性能。当陶瓷材料受到热冲击时, 试样表面首先急剧冷却并收缩, 在试样表面形成拉应力, 进而容易在试样表面引发出裂纹。C15-A预应力氧化铝的抗热震强度提高是由于预应力氧化铝表层存在的压应力抵消了部分热冲击过程表面所产生的拉应力。

图 9. C15-A预应力氧化铝在不同温度热震后的剩余弯曲强度

Fig. 9. Residual flexural strength of C15-A pre-stressed alumina after thermal shock at different temperatures

下载图片 查看所有图片

热震后经染色的试样表面形貌如图10所示。当热震温度为260 ℃时, 能观察到氧化铝表面出现垂直边界的裂纹, 而预应力氧化铝表面没有产生任何微观裂纹。当热震温度为320 ℃时, 氧化铝试样表面产生密集的网状裂纹, 见图10(b), 其剩余强度与260 ℃相比没有进一步降低, 而预应力氧化铝表面仅产生了少量微裂纹, 见图10(c)。

图 10. 热冲击后陶瓷表面的光学显微照片

Fig. 10. Surface optical micrographs of ceramics after thermal shock

下载图片 查看所有图片

观察氧化铝和预应力氧化铝在320 ℃热震后的断面形貌(图11), 可以看出, 无涂层氧化铝以沿晶断裂为主, 其剩余强度退化主要归因于表面产生的网状裂纹和由水渗入引起的弱晶界。而预应力氧化铝热震后, 虽然同样会产生损伤缺陷, 但是其断裂模式仍主要为穿晶断裂。预应力氧化铝在热震后具有更大的剩余强度是因为涂层中的残余压应力能抑制材料表面裂纹的产生并阻碍水淬引起的晶界弱化, 三点弯曲试验过程中裂纹扩展阻力更大, 需要消耗更多的能量。

图 11. 320 ℃热震后陶瓷的断面SEM照片

Fig. 11. Cross section SEM images of ceramic after thermal shock at 320 ℃

下载图片 查看所有图片

3 结论

研究通过在氧化铝粉体中加入合适的石英微粉进行球磨后, 将得到的混合浆料涂覆在氧化铝预烧坯体表面, 无压共烧后在氧化铝表面原位生成了界面结合紧密的莫来石-氧化铝涂层。利用降温过程中涂层内形成的残余压应力对氧化铝实现了预应力强化。

当涂层原始浆料中的石英质量分数为15%时, 涂层中生成的莫来石质量分数约为47%, 此时预应力增强效果最好, 烧结后hs/hc大致为29, 预应力氧化铝的弯曲强度比氧化铝的强度提高了37.19%。这种预应力增强效果会随着温度升高逐渐减弱, 当测试温度达到并超过1000 ℃时, 预应力氧化铝和普通氧化铝具有大致相等的抗弯强度。此外预应力氧化铝还能将热震后剩余强度下降的临界温度从220 ℃提高到280 ℃, 展现出更好的抗热震性能。为实现高性价比的莫来石-氧化铝涂层增强氧化铝构件, 其优化设计准则为:a)形成强界面结合且hs/hc>10; b)相一致的烧结收缩匹配性; c)涂层需要较高的弹性模量。

参考文献

[1] NIELSENJ H, THIELEK, SCHNEIDERJ, et al.Compressive zone depth of thermally tempered glass. Construction and Building Materials, 2021, 310:125238. 10.1016/j.conbuildmat.2021.125238https://linkinghub.elsevier.com/retrieve/pii/S0950061821029809

[2] GREEND J.Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science, 1999, 283(5406):1295-1297. 10037593A processing approach has been identified and reduced to practice in which a residual stress profile can be designed such that cracks in a brittle material are arrested or grow in a stable manner. In the approach, cracks in the body encounter an increase in the magnitude of residual compression as the crack propagates. If correctly designed, the process increases strength and significantly decreases strength variability. This approach was demonstrated for a silicate glass, and multiple cracking was observed as a forewarning of the final failure. Normally, such glasses would fail catastrophically with the propagation of a dominant crack.

[3] BERMEJOR, TORRESY, SÁNCHEZ-HERENCIAA J, et al.Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Materialia, 2006, 54(18):4745-4757. 10.1016/j.actamat.2006.06.008https://linkinghub.elsevier.com/retrieve/pii/S1359645406004290

[4] BERMEJOR, PASCUALJ, LUBET, et al.Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers. Journal of the European Ceramic Society, 2008, 28(8):1575-1583. 10.1016/j.jeurceramsoc.2007.11.003https://linkinghub.elsevier.com/retrieve/pii/S095522190700581X

[5] LAKSHMINARAYANANR, SHETTYD, CUTLERR A.Toughening of layered ceramic composites with residual surface compression. Journal of the American Ceramic Society, 1996, 79(1):79-87. 10.1111/j.1151-2916.1996.tb07883.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1996.tb07883.x

[6] BAOY W, KUANGF H, SUNY, et al.A simple way to make pre-stressed ceramics with high strength. Journal of Materiomics, 2019, 5(4):657-662. 10.1016/j.jmat.2019.06.001A pre-stressing design and a simple fabrication technology to substantially improve the strength of ceramic components are presented. Residual surface compressive stress is generated in ceramic components by pressureless sintering of a green bulk coated with a thin layer of low coefficient of thermal expansion (CTE). The stress level can be controlled by changing the cross-section area ratio, Young's modulus ratio and CTE ratio of the coating. Pre-stressed ZrO2 ceramics coated with Al2O3 can achieve a flexural strength of 1330 +/- 52 MPa, 45% higher than their uncoated counterpart. Similarly, the flexural strength of building porcelain tiles is increased by 70%, from 67 +/- 3 MPa to 114 +/- 5 MPa. The damage tolerance of pre-stressed ZrO2 ceramics is excellent with a high residual strength of similar to 1200 MPa in a thermal shock test at 325 degrees C. This simple technique can improve the mechanical performance of ceramic components with no limitation of size and shape. (C) 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

[7] LIH Y, HAOH J, TIANY, et al.Effects of residual stresses on strength and crack resistance in ZrO2 ceramics with alumina coating. Journal of Inorganic Materials, 2022, 37(4):467-472. 10.15541/jim20210412http://www.jim.org.cn/EN/10.15541/jim20210412

[8] BAOY W, SUNY, KUANGF H, et al.Development and prospects of high strength pre-stressed ceramics. Journal of Inorganic Materials, 2020, 35(4):399-408. 10.15541/jim20190360It is a worldwide challenge to simultaneously improve the strength and damage tolerance of ceramics, which is a core issue in the development of ceramics and a goal pursued by materials scientists. While the pre-stressed design has been widely used to improve the strength of concrete and glass for over a century, a little progress has been made for ceramic materials. In this paper, the research progresses of ceramic reinforcement are summarized, and a new pre-stressed design and model of high strength and high damage tolerance composite ceramics are proposed. The novel design focuses on the generation of residual compressive stresses on the surface of ceramic components to inhibit crack initiation and growth, and offset the external tensile stress, which can be applied to different fields such as structural ceramics, architectural ceramics, domestic ceramics and so on. This simple and economical technique with no limitation of size and shape in ceramic components has great application prospects.

[9] LIN, ZHANGX Y, QUY N, et al.A simple and efficient way to prepare porous mullite matrix ceramics via directly sintering SiO2- Al2O3 microspheres. Journal of the European Ceramic Society, 2016, 36(11):2807-2812. 10.1016/j.jeurceramsoc.2016.03.037https://linkinghub.elsevier.com/retrieve/pii/S0955221916301649

[10] LIH, LIUY S, LIUY S, et al.Silica strengthened alumina ceramic cores prepared by 3D printing. Journal of the European Ceramic Society, 2021, 41(4):2938-2947. 10.1016/j.jeurceramsoc.2020.11.050https://linkinghub.elsevier.com/retrieve/pii/S0955221920309602

[11] LINY M, LIC W, WANGC A.Effects of mullite content on the properties and microstructure of porous anorthite/mullite composite ceramics. Journal of Inorganic Materials, 2011, 26(10):1095-1100. 10.3724/SP.J.1077.2011.01095Porous anorthite/mullite composite ceramics with different mullite contents were fabricated by foam-gelcasting method, using CaCO3, SiO2, α-Al2O3 as raw materials. Effects of mullite content on bulk density, porosity, compressive strength, thermal conductivity and microstructure of the porous composite ceramics were researched. Mullite content has great effect on the apparent porosity of the porous anorthite/mullite composite ceramics. As a result of the appearance of liquid phase in the sintering, the sample shrunk, which is the main reason for the porosity decrease. Compressive strength and thermal conductivity increase with the mullite content under the condition of the similar porosity. Dense pore wall and rod-like mullite grain are benefit for compressive strength of porous   anorthite/mullite composite ceramics. The apparent porosity of the prepared porous anorthite/mullite composite ceramics is in the range of 60.8%-75.2%, the compressive strength is between 12.94 MPa and 36.95 MPa, and the thermal conductivity is in the range of 0.30-1.33 W/(m·K).

[12] JIANGY, CHANGL F, RUH Q, et al.Microstructure and oxidation behaviors of dense mullite-silicon carbide-silicon coating for graphite fabricated by dipping-pyrolysis and reactive infiltration. Surface and Coatings Technology, 2018, 350:410-418. 10.1016/j.surfcoat.2018.07.041https://linkinghub.elsevier.com/retrieve/pii/S0257897218307400

[13] 包亦望.先进陶瓷力学性能评价方法与技术. 北京: 中国建材工业出版社, 2017: 3.

[14] ZHOUX, LIUD, BUH L, et al.XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: a critical review. Solid Earth Sciences, 2018, 3(1):16-29. 10.1016/j.sesci.2017.12.002https://linkinghub.elsevier.com/retrieve/pii/S2451912X17300703

[15] BAOY W, SUS B, HUANGJ L.An uneven strain model for analysis of residual stress and interface stress in laminate composites. Journal of Composite Materials, 2002, 36(14):1769-1778. 10.1177/0021998302036014173http://journals.sagepub.com/doi/10.1177/0021998302036014173

[16] CAIP Z, GREEND J, MESSINGG L.Constrained densification of alumina/zirconia hybrid laminates, II: viscoelastic stress computation. Journal of the American Ceramic Society, 1997, 80(8):1948-1949.

[17] JIANGR, SUNX, LIUH T, et al.Microstructure and mechanical properties improvement of the Nextel™ 610 fiber reinforced alumina composite. Journal of the European Ceramic Society, 2021, 41(10):5394-5399. 10.1016/j.jeurceramsoc.2021.04.031https://linkinghub.elsevier.com/retrieve/pii/S0955221921002843

[18] PABSTW, GREGOROVÁE, ČERNÝM.Isothermal and adiabatic Young's modulus of alumina and zirconia ceramics at elevated temperatures. Journal of the European Ceramic Society, 2013, 33(15):3085-3093. 10.1016/j.jeurceramsoc.2013.06.012https://linkinghub.elsevier.com/retrieve/pii/S0955221913003129

[19] WANGW, SHIZ, WANGZ, et al.Phase transformation and properties of high-quality mullite ceramics synthesized using desert drift sands as raw materials. Materials Letters, 2018, 221:271-274. 10.1016/j.matlet.2018.03.162https://linkinghub.elsevier.com/retrieve/pii/S0167577X18305342

[20] WEIC G, LIUZ, BAOY W, et al.Evaluating thermal expansion coefficient and density of ceramic coatings by relative method. Materials Letters, 2015, 161:542-544. 10.1016/j.matlet.2015.09.034https://linkinghub.elsevier.com/retrieve/pii/S0167577X15305425

[21] BAOY W, ZHOUY C, BUX X, et al.Evaluating elastic modulus and strength of hard coatings by relative method. Materials Science and Engineering: A, 2007, 458(1):268-274. 10.1016/j.msea.2006.12.131https://linkinghub.elsevier.com/retrieve/pii/S0921509307000147

[22] CAIP Z, GREEND J, MESSINGG L.Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects. Journal of the American Ceramic Society, 1997, 80(8):1929-1939. 10.1111/j.1151-2916.1997.tb03075.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1997.tb03075.x

郝鸿渐, 李海燕, 万德田, 包亦望, 李月明. 莫来石/氧化铝预应力涂层增强氧化铝的弯曲强度和抗热震性能[J]. 无机材料学报, 2022, 37(12): 1295. Hongjian HAO, Haiyan LI, Detian WAN, Yiwang BAO, Yueming LI. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating[J]. Journal of Inorganic Materials, 2022, 37(12): 1295.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!