人工晶体学报, 2023, 52 (3): 394, 网络出版: 2023-04-13  

铜基硫化物光催化改性研究进展

Research Progress of Photocatalytic Modification of Copper Based Sulfides
作者单位
1 内蒙古工业大学化工学院, 呼和浩特 010051
2 包头师范学院化学学院, 包头 014030
摘要
铜基硫化物禁带宽度窄, 具有局域表面等离子体共振效应, 对可见光有良好的吸收能力, 且储量丰富、无毒, 这些优势使铜基硫化物光催化剂引起了研究者们的广泛关注。然而, 铜基硫化物光生电子和空穴复合速率高, 可见光利用效率低, 阻碍了其在光催化领域的应用, 因此研究者们尝试了不同的改性策略提高其光催化性能。本文综述了铜基硫化物的改性策略, 主要论述了形貌调控、晶相调控、半导体异质结等方式对铜基硫化物光催化性能的改性, 分析了不同改性方法对铜基硫化物光催化性能提高的作用, 以及铜基硫化物在光催化降解有机污染物、光解水产氢、光催化还原CO2等方面的应用, 并对铜基硫化物改性研究方向做出了展望。
Abstract
Copper based sulfide photocatalysts have attracted extensive attention of researchers due to their narrow band gap, local surface plasmon resonance effect, good absorption ability to visible light, rich in reserves and non-toxic properties. However, the high recombination rate of photogenerated electrons and holes, and the low utilization efficiency of visible light hinder their application in the field of photocatalysis. Therefore, researchers have tried different modification strategies to improve their photocatalytic performance. This paper focuses on the modification strategies of copper based sulfides, mainly discusses the modification of the photocatalytic performance of copper based sulfides by morphology regulation, crystal phase regulation, and semiconductor heterojunction, etc., and analyzes the effect of different modification methods on the improvement of the photocatalytic performance. The application of copper based sulfides in the photocatalytic degradation of organic pollutants, photocatalytic splitting water for hydrogen production, photocatalytic reduction of CO2, etc. are discussed, and the development direction of copper based sulfide modification is prospected.
参考文献

[1] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chemical Reviews, 2022, 122(11): 10484-10537.

[2] 王启明, 王 迪, 孙洪全, 等. 制备方法对量子点敏化太阳能电池CuS纳米晶对电极微观结构和性能的影响[J]. 硅酸盐学报, 2020, 48(3): 434-441.

[3] SANDS T D, WASHBURN J, GRONSKY R. High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94 S)[J]. Physica Status Solidi (a), 1982, 72(2): 551-559.

[4] KAR P, FARSINEZHAD S, ZHANG X J, et al. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction[J]. Nanoscale, 2014, 6(23): 14305-14318.

[5] 胡铭华, 田 华, 贺军辉. 硫化铜空心纳米球的融硫修饰及其对水中Hg2+的高选择性吸附富集[J]. 无机化学学报, 2020, 36(4): 695-702.

[6] ROY P, SRIVASTAVA S K. Nanostructured copper sulfides: synthesis, properties and applications[J]. CrystEngComm, 2015, 17(41): 7801-7815.

[7] COMIN A, MANNA L. New materials for tunable plasmonic colloidal nanocrystals[J]. Chemical Society Reviews, 2014, 43(11): 3957-3975.

[8] 陈建金, 齐东丽, 刘 俊, 等. 射频磁控溅射制备高In组分Al1-xInxN薄膜及其光学性能[J]. 硅酸盐学报, 2021, 49(9): 1970-1975.

[9] LU X Y, DENG F, LIU M, et al. The regulation on visible-light photocatalytic activity of CuInS2 by different Cu/In molar ratio[J]. Materials Chemistry and Physics, 2018, 212: 372-377.

[10] NAKAMURA Y, ISO Y, ISOBE T. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module[J]. ACS Applied Nano Materials, 2020, 3(4): 3417-3426.

[11] HADKE S, HUANG M L, CHEN C, et al. Emerging chalcogenide thin films for solar energy harvesting devices[J]. Chemical Reviews, 2022, 122(11): 10170-10265.

[12] XU W, XIE Z Z, HAN W J, et al. Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11853-11862.

[13] SHAHZAD K, TAHIR M B, SAGIR M, et al. Synthesis of novel p-n heterojunction Cu2SnS3/Ti3+-TiO2 for the complete tetracycline degradation in few minutes and photocatalytic activity under simulated solar irradiation[J]. Ceramics International, 2021, 47(22): 31337-31348.

[14] WANG J Y, BO T T, SHAO B Y, et al. Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 297: 120498.

[15] MAICUS M, LOPEZ E, SANCHEZ M C, et al. Magnetostatic energy calculations in two- and three-dimensional arrays of ferromagnetic prisms[J]. IEEE Transactions on Magnetics, 1998, 34(3): 601-607.

[16] HASANVANDIAN F, ZEHTAB SALMASI M, MORADI M, et al. Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2022, 444: 136493.

[17] MAO M, XU J, YU X B, et al. A Z-type heterojunction of bimetal sulfide CuNi2S4 and CoWO4 for catalytic hydrogen evolution[J]. Dalton Transactions, 2020, 49(19): 6457-6470.

[18] JIANG R R, LU G H, NKOOM M, et al. Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS4/BiOCl Z-scheme system: simultaneously improved visible-light absorption and charge transfer efficiency[J]. Chemical Engineering Journal, 2020, 400: 125913.

[19] RAZA A, SHEN H L, HAIDRY A A. Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion[J]. Applied Catalysis B: Environmental, 2020, 277: 119239.

[20] 鲍二蓬, 张硕卿, 邹吉军, 等. 特殊形貌光催化剂的研究进展[J]. 化学工业与工程, 2021, 38(2): 19-29.

[21] EKIMOV A I, EFROS A L, ONUSHCHENKO A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 1985, 56(11): 921-924.

[22] LI S, GE Z H, ZHANG B P, et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2016, 384: 272-278.

[23] 岳阳阳, 韦 毅, 邓明龙, 等. 构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J]. 化工新型材料, 2020, 48(7): 114-118+123.

[24] ZHANG Y M, YANG X Y, WANG Y L, et al. Insight into l-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2 nanosheets for effective photoreduction removal of Cr(VI)[J]. Applied Surface Science, 2020, 518: 146191.

[25] KAPURIA N, PATIL N N, RYAN K M, et al. Two-dimensional copper based colloidal nanocrystals: synthesis and applications[J]. Nanoscale, 2022, 14(8): 2885-2914.

[26] ZOU J, LIAO G D, JIANG J Z, et al. Controllable interface engineering of g-C3N4/CuS heterojunction photocatalysts[J]. Social Science Electronic Publishing, 2019, 32: 178.

[27] LIU Z M, LIU J, HUANG Y B, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution[J]. Nanoscale, 2018, 11(1): 158-169.

[28] LI Y M, LIU J, LI X Y, et al. Evolution of hollow CuInS2 nanododecahedrons via kirkendall effect driven by cation exchange for efficient solar water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27170-27177.

[29] DING Y, CHEN Y J, GUAN Z F, et al. Hierarchical CuS@ZnIn2S4 hollow double-shelled p-n heterojunction octahedra decorated with fullerene C60 for remarkable selectivity and activity of CO2 photoreduction into CH4[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7888-7899.

[30] 欧金花, 胡波年, 周唤宇, 等. 透明Cu2S@氮掺杂碳纳米片用于双面量子点敏化太阳能电池对电极的性能[J]. 硅酸盐学报, 2020, 48(10): 1581-1588.

[31] SANTAMARIA-PEREZ D, GARBARINO G, CHULIA-JORDAN R, et al. Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions[J]. Journal of Alloys and Compounds, 2014, 610: 645-650.

[32] YANG X, JIANG S Q, ZHANG H C, et al. Pressure-induced structural phase transition and electrical properties of Cu2S[J]. Journal of Alloys and Compounds, 2018, 766: 813-817.

[33] CAO Q, CHE R C, CHEN N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 162: 187-195.

[34] TELKHOZHAYEVA M, KONAR R, LAVI R, et al. Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of layered copper sulfides under simulated solar light[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16103-16114.

[35] 张转芳, 唐 林, 孙 立, 等. CuS/GO纳米复合材料的制备及光催化降解性能[J]. 精细化工, 2019, 36(2): 237-242.

[36] FAKHRAVAR S, FARHADIAN M, TANGESTANINEJAD S. Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: immobilization of catalytic particles on α-Al2O3 fiber[J]. Applied Surface Science, 2020, 505: 144599.

[37] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1163-1172.

[38] 李仁杰, 李园利, 李茜娅, 等.CuInS2/CdS基掺杂纳米晶的晶体结构、光谱性质及性能调控研究[J]. 化学研究与应用, 2021, 33(4): 699-707.

[39] ZHANG X J, GUO Y C, TIAN J, et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 232: 355-364.

[40] KAUSHIK B, YADAV S, RANA P, et al. Precisely engineered type II ZnO-CuS based heterostructure: a visible light driven photocatalyst for efficient mineralization of organic dyes[J]. Applied Surface Science, 2022, 590: 153053.

[41] YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J]. Journal of Hazardous Materials, 2020, 384: 121302.

[42] TANG Q Y, CHEN W F, LV Y R, et al. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation[J]. Separation and Purification Technology, 2020, 236: 116243.

[43] ZHANG R, YU J R, ZHANG T Q, et al. A novel snowflake dual Z-scheme Cu2S/RGO/Bi2WO6 photocatalyst for the degradation of bisphenol A under visible light and its effect on crop growth[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128526.

[44] LEMOS DE SOUZA M, PEREIRA DOS SANTOS D, CORIO P. Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation[J]. RSC Advances, 2018, 8(50): 28753-28762.

[45] 张 轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222.

[46] MANZI A, SIMON T, SONNLEITNER C, et al. Light-induced cation exchange for copper sulfide based CO2 reduction[J]. Journal of the American Chemical Society, 2015, 137(44): 14007-14010.

[47] KIM Y, PARK K Y, JANG D M, et al. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity[J]. The Journal of Physical Chemistry C, 2010, 114(50): 22141-22146.

[48] ZHANG R, WANG H Y, LI Y Y, et al. Investigation on the photocatalytic hydrogen evolution properties of Z-scheme Au NPs/CuInS2/NCN-CNx composite photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(21): 7286-7297.

[49] 刘 果, 吴维成, 卢圆圆, 等. 低温下制备具有高光催化降解罗丹明B活性的CuS/TiO2复合材料[J]. 人工晶体学报, 2016, 45(6): 1567-1573.

[50] 张克杰, 李 宇, 夏 源, 等. 核壳结构CdS/CuS纳米复合材料的制备及光催化性能[J]. 高等学校化学学报, 2019, 40(3): 489-497.

[51] 曾 斌, 曾武军, 刘万锋. 通用法制备石墨烯/硫化铜微米花和石墨烯/硫化亚锡微米花及在水污染处理中的应用[J]. 人工晶体学报, 2019, 48(3): 494-498.

[52] 曾 斌, 曾武军, 刘万锋. 绿色合成石墨烯负载硫化铜/硫化镉多级纳米球及在水污染处理中的应用[J].人工晶体学报, 2019, 48(10): 1907-1911.

[53] 赵晶晶, 张正中, 陈小浪, 等. 微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究[J]. 化学学报, 2020, 78(9): 961-967.

[54] KAUSHIK B, RANA P, SOLANKI K, et al. In-situ synthesis of 3-D hierarchical ZnFe2O4 modified Cu2S snowflakes: exploring their bifunctionality in selective photocatalytic reduction of nitroarenes and methyl orange degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433: 114165.

[55] YANG J H, FANG L, GAN X H, et al. Efficient degradation of sulfamethoxazole under visible light irradiation by polyaniline/copper sulfide composite photocatalyst[J]. Environmental Science and Pollution Research, 2022, 29(24): 36502-36511.

[56] CHEN Q S, ZHOU H Q, WANG J C, et al. Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2022, 307: 121182.

[57] ZOU J, LIAO G D, WANG H T, et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts[J]. Journal of Alloys and Compounds, 2022, 911: 165020.

[58] JAFARINEJAD A, BASHIRI H, SALAVATI-NIASARI M. Sonochemical synthesis and characterization of CuInS2 nanostructures using new sulfur precursor and their application as photocatalyst for degradation of organic pollutants under simulated sunlight[J]. Arabian Journal of Chemistry, 2022, 15(8): 104007.

[59] GUO J R, WANG L P, WEI X, et al. Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light[J]. Journal of Hazardous Materials, 2021, 415: 125591.

[60] WANG T, MEN Q Y, LIU X Q, et al. A staggered type of 0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance for the degradation of 2, 4-Dichlorophenol[J]. Separation and Purification Technology, 2022, 294: 121215.

[61] LIU C Q, ZHANG B, LIU E Z, et al. Nano composite of CuInS2/ZnO with improved photocatalytic activity of degradation and hydrogen production[J]. Optical Materials, 2020, 109: 110379.

[62] CHEN Q H, ZHANG M M, LI J Y, et al. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation[J]. Chemical Engineering Journal, 2020, 389: 124476.

[63] BHOI Y P, MISHRA B G. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation[J]. Chemical Engineering Journal, 2018, 344: 391-401.

[64] IERVOLINO G, VAIANO V, SANNINO D, et al. Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2184-2196.

[65] WANG Y Z, CHEN D, QIN L S, et al. Hydrogenated ZnIn2S4 microspheres: boosting photocatalytic hydrogen evolution by sulfur vacancy engineering and mechanism insight[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(45): 25484-25494.

[66] REDDY D A, KIM Y, GOPANNAGARI M, et al. Recent advances in metal-organic framework-based photocatalysts for hydrogen production[J]. Sustainable Energy & Fuels, 2021, 5(6): 1597-1618.

[67] GUO W W, KIM J, KIM H, et al. Cu-Co-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19789-19801.

[68] HOU J W, HUANG B X, KONG L C, et al. One-pot hydrothermal synthesis of CdS-CuS decorated TiO2 NTs for improved photocatalytic dye degradation and hydrogen production[J]. Ceramics International, 2021, 47(21): 30860-30868.

[69] LUO J H, LIN Z X, ZHAO Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis, 2020, 41(1): 122-130.

[70] FAN H T, WU Z, LIU K C, et al. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 433: 134474.

[71] XIN X, SONG Y R, GUO S H, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118773.

[72] VEMPULURU N R, KANAKKAMPALAYAM KRISHNAN C, PARNAPALLI R, et al. Solar hydrogen generation from organic substance using earth abundant CuS-NiO heterojunction semiconductor photocatalyst[J]. Ceramics International, 2021, 47(7): 10206-10215.

[73] MAHADIK M A, PATIL R P, CHAE W S, et al. Microwave-assisted rapid synthesis of Cu2S∶ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization[J]. Journal of Industrial and Engineering Chemistry, 2022, 108: 203-214.

[74] RAO V N, RAVI P, SATHISH M, et al. Titanate quantum dots-sensitized Cu2S nanocomposites for superficial H2 production via photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40379-40390.

[75] WU Y L, ZHANG H Y, LI Y J, et al. Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36530-36542.

[76] WANG G R, QUAN Y K, YANG K C, et al. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution[J]. Journal of Materials Science & Technology, 2022, 121: 28-39.

[77] HOU F Y, LIU F, WU H C, et al. In situ synthesis of Cu3P/P-doped g-C3N4 tight 2D/2D heterojunction boosting photocatalytic H2 evolution[J]. Chinese Journal of Chemistry, 2023, 41(2): 173-180.

[78] SARILMAZ A, GENC E, ASLAN E, et al. Photocatalytic hydrogen evolution via solar-driven water splitting by CuSbS2 with different shapes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112706.

[79] YU H Y, LIANG H O, BAI J, et al. Controllable growth of coral-like CuInS2 on one-dimensional SiO2 nanotube with super-hydrophilicity for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28410-28422.

[80] WANG Y, PENG J R, XU Y F, et al. Facile fabrication of CdSe/CuInS2 microflowers with efficient photocatalytic hydrogen production activity[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8294-8302.

余海燕, 梁海欧, 白杰, 李春萍. 铜基硫化物光催化改性研究进展[J]. 人工晶体学报, 2023, 52(3): 394. YU Haiyan, LIANG Haiou, BAI Jie, LI Chunping. Research Progress of Photocatalytic Modification of Copper Based Sulfides[J]. Journal of Synthetic Crystals, 2023, 52(3): 394.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!