光散射学报, 2022, 34 (3): 203, 网络出版: 2023-02-04  

纳米金复合炸药的设计及其近红外光吸收性质研究

Study on the design of nanogold composite explosives and its near-infrared light absorption properties
作者单位
渤海大学 物理科学与技术学院, 辽宁 锦州 121013
摘要
金纳米粒子具有较大光吸收截面和光谱选择性, 在激光点火含能材料中具有极大的应用潜力。本文根据目前实验中所制备的纳米金属复合炸药的结构和尺寸, 构建了三种复合炸药的光吸收模型, 分别为Au核RDX壳球形纳米粒子, Au-RDX-Au-RDX均匀相间的球形纳米粒子, 以及RDX核Au壳的纳米粒子。利用离散偶极近似方法(DDA)对纳米金复合炸药的近红外吸收光谱进行了分析, 并考虑了多种模型核壳尺寸及周围环境介质对光吸收性质的影响。获得了近红外光辐照下, 纳米复合结构的最佳结构尺寸参数。结果表明, 当制备成纳米级Au核RDX壳球形粒子时, 其对近红外光(800 nm)波长具有较高的光吸收, 相应的核壳尺寸约为60 nm和20 nm左右, 且在水中的吸收要比在空气中的吸收强。
Abstract
Gold nanoparticles have great application potential in laser ignition due to their large light absorption cross section and spectral selectivity. Based on the structure and size of nanometallic composite explosives prepared in the present experiment, three types of the optical absorption models for composite explosives are constructed. They are respectively Au-core RDX-shell spherical nanoparticles, Au-RDX-Au-RDX uniform alternate core-shell spherical nanoparticles, and the RDX-core Au-shell nanoparticles. The near-infrared light absorption spectra of nanogold composite explosives are analyzed using the discrete dipole approximation method (DDA), and the effects of core shell sizes and surrounding ambient media on near-infrared laser absorption properties are considered for various models. The optimal structure parameters of the nanocomposite structure under near-infrared laser irradiation are obtained. The results show that when being prepared into a nano-scale Au core RDX shell spherical particle, it has a high light absorption for the near-infrared laser (800 nm) wavelength, the corresponding core shell size is about respectively 60 nm and 20 nm, and the absorption intensity in water is stronger than that in the air.
参考文献

[1] 赵兴海, 高杨, 赵翔. 激光起爆技术研究进展[J]. 红外与激光工程, 2009, 38(5): 797-810.(Zhao X H, GAO Y, Zhao X. Research Progress of Laser Initiation Technology [J]. Infrared and Laser Engineering,2009,38(5): 797G810.)

[2] Yu H, Zhang P, Lu S, et al. Synthesis and Multipole Plasmon Resonances of Spherical Aluminum Nanoparticles[J].The journal of physical chemistry letters, 2020, 11(15): 5836-5843.

[3] Orooji Y, Jaleh B, Homayouni F, et al. Laser ablation-assisted synthesis of poly (vinylidene fluoride)/Au nanocomposites: crystalline phase and micromechanical finite element analysis[J].Polymers, 2020, 12(11): 2630.

[4] Deng H Y, Wang L, Tang D, Zhang Y, Zhang L. Review on the laser-induced performance of photothermal materials for ignition application.[J].Energetic Materials Frontiers, 2021, 2(3): 201-217.

[5] Halfpenny P J, Roberts K J, Sherwood J N. Dislocations in energetic materials[J].Journal of materials science, 1984, 19(5): 1629-1637.

[6] Murugesan M, Cunningham D, Martinez-Albertos J L, et al. Nanoparticle-coated microcrystals[J]. Chemical communications, 2005 (21): 2677-2679.

[7] Pant A, Nandi A K, Newale S P, et al. Preparation and characterization of ultrafine RDX[J].Central European Journal of Energetic Materials, 2013, 10(3): 393--407.

[8] Churchyard S, Fang X, Vrcelj R. Laser ignitibility of energetic crystals doped with gold nanoparticles[J].Optics & Laser Technology, 2019, 113: 281-288.

[9] Fang X, Stone M, Stennett C. Pulsed laser irradiation of a nanoparticles sensitised RDX crystal[J].Combustion and Flame, 2020, 214: 387-393.

[10] Wang H, Rehwoldt M C, Wang X, et al. On the promotion of high temperature AP decomposition with silica mesoparticles[J].Combustion and Flame, 2019, 200: 296-302.

[11] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J].Josa a, 1994, 11(4): 1491-1499.

[12] Kundracik F, Kocifaj M, Videen G, et al.Optical properties of charged nonspherical particles determined using the discrete dipole approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107245.

[13] Du M, Tang G H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting[J].Solar Energy, 2016, 137: 393-400.

[14] Dou Y, Zhigilei L V, Winograd N, et al. Explosive boiling of water films adjacent to heated surfaces: A microscopic description[J]. The Journal of Physical Chemistry A, 2001, 105(12): 2748-2755.

[15] Liao M J, Duan L Q. Explosive boiling of liquid argon films on flat and nanostructured surfaces[J].Numerical Heat Transfer, Part A: Applications, 2020, 78(3): 94-105.

[16] 王春霞, 王永, 王声乐, 付德刚. 水-乙醇体系中胶体金纳米粒子的吸收光谱变化[J]. 中国科技论文在线, 2007, 2(4), 304-308.(Wang C X, Wang Y, Wang G S,et al.Absorption spectrum changes of colloidal gold nanoparticles in water-ethanol system[J]. Chinese science and technology papers in Wire,2007,2(4),304-308.)

王智, 彭亚晶, 赵雨新, 宾耀铭. 纳米金复合炸药的设计及其近红外光吸收性质研究[J]. 光散射学报, 2022, 34(3): 203. WANG Zhi, ZHAO Yuxin, BIN Yaoming, PENG Yajing. Study on the design of nanogold composite explosives and its near-infrared light absorption properties[J]. The Journal of Light Scattering, 2022, 34(3): 203.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!