人工晶体学报, 2023, 52 (3): 428, 网络出版: 2023-04-13  

Au掺杂Hg3In2Te6成键机制与电子性质的第一性原理研究

First-Principles Study on Bonding Mechanism and Electronic Properties of Au Doped Hg3In2Te6
作者单位
1 上海航天电子技术研究所, 上海 201109
2 西北工业大学凝固技术国家重点实验室, 西安 710072
摘要
Hg3In2Te6(简称MIT)是Ⅱ-Ⅵ/Ⅲ-Ⅵ族化合物半导体Hg(3-3x)In2xTe3中x=0.5时对应的稳定相。本文采用第一性原理方法, 系统地探究了Au在MIT中的稳定性和掺杂效率。计算结果表明: Au-Te键具有与Hg-Te相似的极性共价键特性, 表明Au在MIT中具有一定掺杂稳定性。此外, 发现Au在MIT中存在两性掺杂特性: Au在AuHg和AuIn体系中表现受主特性, Au-5d电子轨道分别在价带顶和-4 eV位置与Te-5p电子轨道形成共振, 形成受主杂质能级; 而Au在AuTe和AuI体系中表现施主特性, Au-5d与Hg-6s、In-5s电子轨道在导带底产生共振, 形成施主杂质能级。富Hg条件下, AuI、AuTe与AuHg之间会产生自我补偿效应, 费米能级被钉扎在价带顶, 而富Te条件下, 上述自我补偿效应将会得到有效消除。
Abstract
Hg3In2Te6 (MIT for short) is a stable phase corresponding to x=0.5 in the Ⅱ-Ⅵ/Ⅲ-Ⅵ compound semiconductor Hg(3-3x)In2xTe3. In this paper, the stability and doping efficiency of Au in MIT were systematically investigated using the first-principles method. The results show that Au-Te bonds has polar covalent bond characteristics similar to that of Hg-Te bonds in MIT, indicating that Au has certain doping stability in MIT. In addition, it is found that there are amphoteric doping properties of Au in MIT: Au exhibits acceptor properties in AuHg and AuIn systems, and the Au-5d electron orbital resonates with the Te-5p electron orbital at the top of the valence band and -4 eV position, respectively, forming acceptor defect levels. While Au exhibits donor characteristics in AuTe and AuI systems, Au-5d resonates with Hg-6s and In-5s electron orbitals at the conduction band bottom, forming donor defect levels. It is worth noting that under Hg-rich conditions, there will be a self-compensation effect between AuI, AuTe and AuHg systems, and the Fermi level will be pinned at the top of valence band, while under Te-rich conditions, the self-compensation effect will be effectively eliminated.
参考文献

[1] KIROVSKAYA I A, FILATOVA T N, NOR P E. Multicomponent diamond-like semiconductors based on the InBV-CdS system: bulk and surface properties[J]. Semiconductors, 2021, 55(2): 228-233.

[2] ZHANG X L, SUN W G, ZHANG L, et al. Temperature-dependent characteristics of Pt Schottky contacts on n-type HgInTe[J]. Semiconductor Science and Technology, 2008, 23(10): 105005.

[3] MASLYANCHUK O L, KOSYACHENKO L A, GERMAN I I, et al. Electrical and optical properties of Hg3In2Te6 single crystals[J]. Physica Status Solidi C, 2009, 6(5): 1154-1157.

[4] LEUTE V, SCHMIDTKE H M. Thermodynamics and kinetics of the quasibinary system Hg3-3kIn2kTe3-I. Investigations by X-ray diffraction and differential thermoanalysis[J]. Journal of Physics and Chemistry of Solids, 1988, 49(4): 409-420.

[5] 王领航. Hg3-3xIn2xTe3晶体生长及性能表征[D]. 西安: 西北工业大学, 2008.

[6] 郑 璇. Hg3In2Te6晶体生长、性能表征及电极制备[D]. 西安: 西北工业大学, 2013.

[7] MALIK A I, VIEIRA M, FERNANDES M, et al. Near-infrared photodetectors based on a HgInTe-semiconductor compound[C]//SPIE Proceedings, Photodetectors: Materials and Devices IV. San Jose, CA. SPIE, 1999.

[8] KOSYACHENKO L A, PARANCHICH Y S, MAKOGONENKO V N, et al. Electrical performance of HgInTe surface-barrier photodiodes[J]. Technical Physics, 2003, 48(5): 647-650.

[9] KOSYACHENKO L A, RARENKO I M, SKLYARCHUK E F, et al. Electrical characteristics of the ITO/HgInTe photodiodes[J]. Semiconductors, 2006, 40(5): 554-557.

[10] 张小雷, 孙维国, 鲁正雄, 等. Pt/HgInTe肖特基红外探测器的抗辐照特性[J]. 红外与激光工程, 2009, 38(3): 406-409.

[11] SUN J, FU L, WANG Y Y, et al. Effect of Ar+ ion etching treatment on the surface work function of Hg3In2Te6 wafer[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187: 49-52.

[12] SUN J, FU L, WANG Y Y, et al. Study of Au/Hg3In2Te6 interface by synchrotron radiation photoemission spectroscopy[J]. Journal of Applied Physics, 2013, 114(8): 083719.

[13] SUN J, FU L, LIU H W, et al. On the morphology and crystallography of Hg5In2Te8 precipitation in Hg3In2Te6[J]. Journal of Alloys and Compounds, 2014, 601: 298-306.

[14] SUN J, FU L, LIU H W, et al. Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation[J]. Journal of Alloys and Compounds, 2015, 622: 206-212.

[15] LI Y P, FU L, WANG X Z, et al. Effect of passivation on the electrical properties of Au/Hg3In2Te6 Schottky contact[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 7121-7124.

[16] LI Y P, FU L, SUN J. The modification of electrical properties of Au/n-Hg3In2Te6 Schottky contact by the introduction of ITO interlayer[J]. Current Applied Physics, 2016, 16(6): 623-627.

[17] SHAW D, CAPPER P. Extrinsic doping[M]//Mercury Cadmium Telluride. Chichester, UK: John Wiley & Sons, Ltd, 2010: 317-337.

[18] WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211.

[19] SUN L Z, CHEN X S, ZHAO J J, et al. Electronic properties and chemical trends of the arsenic in situ impurities in Hg1-xCdxTe: first-principles study[J]. Physical Review B, 2007, 76(4): 045219.

[20] HAN J L, SUN L Z, QU X D, et al. Electronic properties of the Au impurity in Hg0.75Cd0.25Te: first-principles study[J]. Physica B: Condensed Matter, 2009, 404(1): 131-137.

[21] BHATTACHARYA S K, KSHIRSAGAR A. Ab initio calculations of structural and electronic properties of CdTe clusters[J]. Physical Review B, 2007, 75(3): 035402.

[22] 熊智慧, 李志西, 尹亚庆, 等. Fe掺杂α-Bi2O3光电性质的第一性原理研究[J]. 人工晶体学报, 2021, 50(2): 278-282.

[23] 谭 心, 张博晨, 任 元, 等. Er掺杂金刚石缺陷的第一性原理研究[J]. 人工晶体学报, 2021, 50(6): 1023-1028+1048.

[24] SPENCER P M. The semiconducting properties of HgTe-In2Te3 alloys[J]. British Journal of Applied Physics, 1964, 15(6): 625-632.

[25] SHI S X, ZHU L G, JIA L N, et al. Ab-initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3[J]. Computational Materials Science, 2015, 108: 121-127.

[26] GHARAATI A, ESMAEILI F. Bandgap structure and density of states of two-dimensional magnetized plasma photonic crystals[J]. International Journal of Modern Physics B, 2022, 36(20): 2250124.

[27] NASAR A, SHAMSUDDIN M. Thermodynamic investigations of HgTe[J]. Journal of the Less Common Metals, 1990, 161(1): 87-92.

[28] RABENOK E V, GALANOVICH M V, NOVIKOV G F, et al. Effect of self-compensation on the electron lifetime in gallium-doped cadmium telluride[J]. Semiconductors, 2009, 43(7): 846-851.

高求, 罗燕, 罗江波, 刘米丰, 杨榛, 赵涛, 傅莉. Au掺杂Hg3In2Te6成键机制与电子性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(3): 428. GAO Qiu, LUO Yan, LUO Jiangbo, LIU Mifeng, YANG Zhen, ZHAO Tao, FU Li. First-Principles Study on Bonding Mechanism and Electronic Properties of Au Doped Hg3In2Te6[J]. Journal of Synthetic Crystals, 2023, 52(3): 428.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!