作者单位
摘要
华南师范大学信息光电子科技学院,广东 广州 510006
综述了近期基于腔内空间光调制器的超快光纤激光器的研究进展,总结了目前基于腔内空间光调制器的超快光纤激光器所能实现的基本功能和输出特性,同时介绍了本课题组基于腔内空间光调制器的研究成果,最后对腔内空间光调制器驱动的超快光纤激光器的发展趋势和应用前景进行了展望。
激光器 超快光纤激光器 空间光调制器 光场调控 脉冲整形 色散管理 lasers ultrafast fiber laser spatial light modulator optical field modulation pulse shaping dispersion management 
激光与光电子学进展
2024, 61(1): 0114009
李庞跃 1周顺 2,***程进 2,**赵翊博 2[ ... ]刘卫国 2,*
作者单位
摘要
1 西安工业大学兵器科学与技术学院,陕西 西安 710021
2 西安工业大学光电工程学院,陕西 西安 710021
半导体激光器在激光扫描中得到了广泛应用,但由于其快慢轴发散角差异较大,需要进行光束整形。为提高线阵半导体激光器的光束均匀性,并满足小型扫描成像系统的微型化需求,提出一体化透镜阵列光束整形系统设计方案。系统采用一体化非球面透镜对高斯光束进行整形,快轴进行准直,慢轴进行扩束,能够获得高长宽比、光强均匀分布的线光束。理论分析一体化非球面透镜阵列进行准直扩束的原理,依据费马原理确定系统初始结构参数。利用光学设计软件对系统进行仿真优化,得到快轴发散角为2.8 mrad、慢轴发散角为48.93°(长宽比为325)、能量利用率为88.79%、能量均匀度为94.51%的线光束。结果表明,此方法整形效果理想、结构简单、体积小,符合未来光束整形系统微型化的发展趋势。
激光器与激光光学 线阵半导体激光器 光束整形 一体化透镜阵列 光学设计 laser and laser optics linear array semiconductor laser beam shaping integrated lens array optical design 
激光与光电子学进展
2023, 60(15): 1514011
作者单位
摘要
1 中国计量大学机电工程学院, 浙江 杭州 310018
2 中国计量大学现代科技学院, 浙江 杭州 310018
3 中国计量大学光学与电子科技学院, 浙江 杭州 310018
红外甲烷传感器根据朗伯-比尔定律对甲烷的浓度进行检测, 而吸收系数是朗伯-比尔定律中的重要参数, 其受温度和压强的影响变化较大, 其变化会导致浓度测量的误差, 因而研究不同温度、 气压下甲烷吸收系数的变化规律对设计高精度的红外甲烷传感器有重要意义。 文献报道中, 一般采用获得测量甲烷浓度受环境影响的实验数据, 再加以数学处理的方法, 对测量误差进行补偿和修正。 该工作以分子光谱分析理论为基础, 以3 016.49 cm-1波数的甲烷为研究对象, 利用HITRAN数据库的甲烷数据, 设计了Python程序调用HAPI函数, 拟合计算出甲烷吸收系数随温度、 气压的变化规律, 并通过傅里叶红外光谱对甲烷吸收系数的变化规律进行实验验证。 结果表明, 在3 016.49 cm-1处, 水分子(湿度的影响)对于甲烷吸收系数的影响很小, 可以忽略不计; 温度和气压对吸收系数有一定的影响, 当气压为1.0 atm, 温度在-10~50 ℃范围内升高时, 甲烷吸收系数减小, 吸收系数与温度的关系呈线性关系; 当温度为273.15 K时, 气压在0.6~1.2 atm升高时, 甲烷收系数增加, 吸收系数与气压关系呈线性关系。 最后拟合出的吸收系数与温度、 气压的公式, k(T, p)=53.65(±3.24)-0.114 6(±0.010 7)T+21.07(±0.95)p。 实验中甲烷标准气体的浓度分别为1.01%, 2.00%, 3.51%和5.06%, 通入直径为2.5 cm, 长度为8 cm的短光程石英气体池中, 通过改变气体的气压及温度, 从傅里叶红外光谱仪获得甲烷的吸光度, 由于受实验仪器分辨率的影响, 如直接通过吸光度反演甲烷浓度其误差较大, 采用吸收系数与吸光度的比值来判断吸收系数拟合的正确性。 结果表明, 浓度为定值, 气压与温度变化时, 吸收系数与吸光度之比基本为定值, 从而证明了计算拟合出的甲烷吸收系数随温度压强变化的正确性。
甲烷吸收系数 光谱谱线线型轮廓 Lambert-Beer定律 高分辨率透射光谱(HITRAN) Methane absorption coefficient Spectral line profile Beer-Lambert’s law HITRAN 
光谱学与光谱分析
2021, 41(8): 2462

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!