Author Affiliations
1 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
2 Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
3 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
4 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
5 e-mail:
6 e-mail:
We propose how to achieve quantum nonreciprocity via unconventional photon blockade (UPB) in a compound device consisting of an optical harmonic resonator and a spinning optomechanical resonator. We show that, even with very weak single-photon nonlinearity, nonreciprocal UPB can emerge in this system, i.e., strong photon antibunching can emerge only by driving the device from one side but not from the other side. This nonreciprocity results from the Fizeau drag, leading to different splitting of the resonance frequencies for the optical counter-circulating modes. Such quantum nonreciprocal devices can be particularly useful in achieving back-action-free quantum sensing or chiral photonic communications.
Photonics Research
2019, 7(6): 06000630

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。