Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
The conversion-efficiency for second-harmonic (SH) in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica, and pulse pump lasers with high peak power are widely employed. Here, we propose a simple strategy to efficiently realize the broadband and continuous wave (CW) pumped SH, by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter. In the experiment, high efficiency up to 0.08 %W-1mm-1 is reached for a C-band pump laser. The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser, but also multi-frequencies mixing supported by three CW light sources. Moreover, broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth. The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes, development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
nonlinear optics second-harmonic generation continuous wave pump high efficiency multi-frequencies mixing broad spectra microfibers gallium selenide 
Opto-Electronic Advances
2023, 6(9): 230012
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures. Here, we report an in-fiber photoelectric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating (TFBG) for photoelectric and electric-induced thermo-optic conversions. The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer. The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W, allowing the spectrum analysis by real-time monitoring of photocurrent evolution. Based on the thermal-optic effect of electrical injection, the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TFBG, with a high sensitivity approaching 2.167×104 nm/A2. The in-fiber photoelectric device, therefore as a powerful tool, could be widely available as off-the-shelf product for photodetection, spectrometer and current sensor.
tilted fiber grating photoelectric device graphene photoelectric conversion thermo-optic switching 
Opto-Electronic Science
2023, 2(6): 230012
Author Affiliations
Abstract
1 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 e-mail: bqjiang@nwpu.edu.cn
3 e-mail: xuetaogan@nwpu.edu.cn
We created an all-fiber solution for fast, continuous, and controllable tuning of Fano-like resonance. By embedding a graphene-coated fiber Bragg grating into one arm of a Mach–Zehnder interferometer, the narrow Bragg resonance interacts with a broad interference spectrum, forming a sharp asymmetric Fano-like resonance line shape. With the application of an electrical voltage over the graphene layer, the generated Joule heating shifts the Bragg resonance and consequently tunes the asymmetric Fano-like resonance line shape to a symmetric dip or electromagnetically induced transparency-like peak. Further, by exploiting two modulated states with reversed Fano-like resonance line shapes, an optical switch can operate with an extinction ratio of 9 dB. The well-engineered Fano-like resonance in an all-fiber structure opens up new horizons for applications of fiber gratings in optical signal processing, slow-light lasing, and fiber sensing.
Photonics Research
2022, 10(5): 05001238
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education
2 and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
3 SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
We propose a low-threshold soliton fiber laser passively mode locked with two different types of film-like saturable absorbers, one of which is fabricated by mixing Bi2Te3 with de-ionized water, as well as polyvinyl alcohol (PVA), and then evaporating them in a Petri dish, and the other of which is prepared by directly dropping Bi2Te3 solution on the PVA film. Both Bi2Te3–PVA films exhibit outstanding features of low loss, high flexibility, and easy synthesis. By incorporating Bi2Te3–PVA films into fiber lasers, stable single-soliton emissions are obtained at a low pump power of 13 mW. Our results suggest that the Bi2Te3 can work as a promising mode locker for ultrafast lasers, while PVA is an excellent host for fabricating high-performance film-based saturable absorbers.
Mode-locked lasers Mode-locked lasers Lasers Lasers fiber fiber Nanomaterials Nanomaterials Ultrafast nonlinear optics Ultrafast nonlinear optics 
Photonics Research
2015, 3(2): 02000A43
作者单位
摘要
西北工业大学理学院,陕西省光信息技术重点实验室,教育部空间应用物理与化学重点实验室, 陕西 西安 710072
根据强度解调型光纤光栅法布里珀罗干涉仪(FBG-FPI)的应变传感原理,分析讨论了其光栅栅长、折射率调制深度、干涉仪腔长以及与换能器的结合方式等因素对传感器最大应变灵敏度的影响;同时对比分析了强度解调型FBG-FPI与单个光纤布拉格光栅(FBG)以及传统光纤法布里珀罗干涉仪的应变传感灵敏度差异。结果表明,强度解调型FBG-FPI应变传感器的理论可探测最小应变量达10-12量级。利用FBG-FPI粘贴压电陶瓷(PZT)提供的微小周期性应变实验证明,强度解调型FBG-FPI应变传感器具有对微弱交变应变信号的探测能力,并且在进行非线性修正后,该应变传感器还具有良好的线性响应特性。
传感器 光纤传感 光纤布拉格光栅 法布里珀罗干涉仪 应变灵敏度 sensors fiber sensor fiber Bragg grating Fabry-Pérot interferometer strain sensitivity 
中国激光
2010, 37(6): 1525

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!