Author Affiliations
Abstract
1 Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou Universityhttps://ror.org/04ypx8c21, Zhengzhou 450052, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
4 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
5 e-mail: wangmengguang@zju.edu.cn
6 e-mail: zanghuaping@zzu.edu.cn
7 e-mail: yzhang@mail.cnu.edu.cn
The manipulation and detection of polarization states play a crucial role in the application of 6G terahertz communication. Nonetheless, the development of compact and versatile polarization detection devices capable of detecting arbitrary polarizations continues to be a challenging endeavor. Here, we demonstrate a terahertz polarization detection scheme by performing mode purity analysis and multidimensional analysis of the transmitted vortex field. The power of the proposed polarization recognition is verified by using three polarization trajectories, including linear polarizations, circular polarizations, and elliptical polarizations. Using the reconstructed complete polarization parameters, the detected polarization states are characterized using polarization ellipses, Poincaré sphere, and full-Stokes parameters. The experimental results validate the power of this scheme in polarization detection. This scheme holds promise for applications in polarization imaging and terahertz communication.
Photonics Research
2023, 11(12): 2256
Jitao Li 1†Guocui Wang 2,3†Zhen Yue 1†Jingyu Liu 3[ ... ]Jianquan Yao 1,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
3 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
If a metalens integrates the circular polarization (CP) conversion function, the focusing lens together with circular-polarizing lens (CPL) in traditional cameras may be replaced by a metalens. However, in terahertz (THz) band, the reported metalenses still do not obtain the perfect and strict single-handed CP, because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP (LCP) and right-handed CP (RCP) components. In this paper, a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion. Also, we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states, which can simply manipulate the focusing for incident linear polarization (LP) THz wave in three polarization conversion states, including LP without conversion, LCP and RCP. Moreover, the polarization conversion behavior is reversible, that is, the THz metalens can convert not only the LP into arbitrary single-handed CP, but also the LCP and RCP into two perpendicular LP, respectively. The metalens is expected to be used in advanced THz camera, as a great candidate for traditional CPL and focusing lens group, and also shows potential application in polarization imaging with discriminating LCP and RCP.
terahertz metalens metamaterials metasurfaces dynamic phase single-handed circular polarization reversible conversion 
Opto-Electronic Advances
2022, 5(1): 210062
Zhen Yue 1†Jitao Li 1†Jie Li 1†Chenglong Zheng 1†[ ... ]Jianquan Yao 1,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 Department of Optoelectronic Information Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field. Here, a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization. Specifically, when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms, the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave. As function demonstrations, we have designed two types of metasurface zone plates: one is a focused linear polarizer, and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves. The simulated and measured results are consistent with theoretical expectations, suggesting that the proposed concept is flexible and feasible. Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field. Here, a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization. Specifically, when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms, the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave. As function demonstrations, we have designed two types of metasurface zone plates: one is a focused linear polarizer, and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves. The simulated and measured results are consistent with theoretical expectations, suggesting that the proposed concept is flexible and feasible. Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
metasurface zone plates polarization conversion terahertz 
Opto-Electronic Science
2022, 1(3): 210014
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Department of Optoelectronic Information Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Phase-modulated metasurfaces that can implement the independent manipulation of co- and cross-polarized output waves under circularly polarized (CP) incidence have been proposed. With this, we introduce one particular metasurface composed of meta-atoms with a phase difference of 2π/3 to generate specific elliptically polarized waves under various polarized incidences. Furthermore, a metasurface composed of these above meta-atoms and the meta-atoms with a phase difference of π/3 arranged in a certain rule can realize polarization conversion function between linearly polarized and CP states. The designs shed new light on multifarious optical devices and may further promote the development of metasurface polarization optics.
phase-modulated metasurfaces polarization conversion multiplexing 
Chinese Optics Letters
2022, 20(4): 043601
作者单位
摘要
天津大学 激光与光电子研究所,天津 300072
基于单层金属手性谐振器的超表面在垂直入射条件下很难激发较大的手性光学响应,难以形成与电偶极矩不正交的面内磁偶极矩分量。光场在介质超原子中激发的位移电流可能引发面内磁矩,进而实现高效的手性光学响应。基于无损的全硅超表面在太赫兹波段实现了巨大的手性响应。手性硅柱中的泄露波导模式同时激发了面内电偶和磁偶极矩,从而引发了自旋选择的后向电磁辐射,进而实现了太赫兹波的手性光学响应。利用线栅偏振片搭建了偏振相关的时域光谱测试系统,测得透射光谱中的圆二色性峰值达0.2。这种制备简单的全硅超表面为太赫兹手性超器件的设计提供了新的思路,有望应用于太赫兹偏振成像、光谱检测等领域。
太赫兹波 手性 全介质超表面 圆偏振 terahertz wave chirality metasurface circular polarization 
太赫兹科学与电子信息学报
2021, 19(5): 800
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China
5 e-mail: yating@tju.edu.cn
6 e-mail: yzhang@mail.cnu.edu.cn
7 e-mail: jqyao@tju.edu.cn
Polarization manipulation of electromagnetic wave or polarization multiplexed beam shaping based on metasurfaces has been reported in various frequency bands. However, it is difficult to shape the beam with multi-channel polarization conversion in a single metasurface. Here, we propose a new method for terahertz wavefront shaping with multi-channel polarization conversion via all-silicon metasurface, which is based on the linear shape birefringence effect in spatially interleaved anisotropic meta-atoms. By superimposing the eigen- and non-eigen-polarization responses of the two kinds of meta-atoms, we demonstrate the possibility for high-efficiency evolution of several typical polarization states with two independent channels for linearly polarized waves. The measured polarization conversion efficiency is higher than 70% in the range of 0.9–1.3 THz, with a peak value of 89.2% at 1.1 THz. In addition, when more other polarization states are incident, combined with the integration of sub-arrays, we can get more channels for both polarization conversion and beam shaping. Simulated and experimental results verify the feasibility of this method. The proposed method provides a new idea for the design of terahertz multi-functional metadevices.
Photonics Research
2021, 9(10): 10001939
Jie Li 1†Chenglong Zheng 1†Guocui Wang 2,3Jitao Li 1[ ... ]Jianquan Yao 1,6,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 School of Mechanical Engineering, Jiangsu University, Zhenjiang 225009, China
5 e-mail: yating@tju.edu.cn
6 e-mail: jqyao@tju.edu.cn
Chiral metasurfaces based on asymmetric meta-atoms have achieved artificial circular dichroism (CD), spin-dependent wavefront control, near-field imaging, and other spin-related electromagnetic control. In this paper, we propose and experimentally verify a scheme for achieving high-efficiency chiral response similar to CD of terahertz (THz) wave via phase manipulation. By introducing the geometric phase and dynamic phase in an all-silicon metasurface, the spin-decoupled terahertz transmission is obtained. The giant circular dichroism-like effect in the transmission spectrum is observed by using a random phase distribution for one of the circular polarization components. More importantly, the effect can be adjusted when we change the area of the metasurface illuminated by an incident terahertz beam. In addition, we also demonstrate the spin-dependent arbitrary wavefront control of the transmitted terahertz wave, in which one of the circularly polarized components is scattered, while the other forms a focused vortex beam. Simulated and experimental results show that this method provides a new idea for spin selective control of THz waves.
Photonics Research
2021, 9(4): 04000567
Author Affiliations
Abstract
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
We propose axial line-focused spiral zone plates (ALFSZPs) for generating tightly focused X-ray vortex beams with ultra-long depth of focus (DOF) along the propagation direction. In this typical design, compared with the conventional spiral zone plates (SZPs) under the same numerical aperture (NA), the DOF of ALFSZPs has been extended to an ultra-length by optimizing the corresponding parameters. Besides, it also exhibits lower side lobes and smaller dark cores in the whole focus volume. The diameters of dark cores increase as the topological charge value increases.
050.1220 Apertures 050.1940 Diffraction 050.1965 Diffractive lenses 
Chinese Optics Letters
2018, 16(8): 080501

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!