Author Affiliations
1 Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
3 Department of Physics, University of Washington, Seattle, Washington 98195, USA
Integrated photonics is poised to become a mainstream solution for high-speed data communications and sensing in harsh radiation environments, such as outer space, high-energy physics facilities, nuclear power plants, and test fusion reactors. Understanding the impact of radiation damage in optical materials and devices is thus a prerequisite to building radiation-hard photonic systems for these applications. In this paper, we report real-time, in situ analysis of radiation damage in integrated photonic devices. The devices, integrated with an optical fiber array package and a baseline-correction temperature sensor, can be remotely interrogated while exposed to ionizing radiation over a long period without compromising their structural and optical integrity. We also introduce a method to deconvolve the radiation damage responses from different constituent materials in a device. The approach was implemented to quantify gamma radiation damage and post-radiation relaxation behavior of SiO2-cladded SiC photonic devices. Our findings suggest that densification induced by Compton scattering displacement defects is the primary mechanism for the observed index change in SiC. Additionally, post-radiation relaxation in amorphous SiC does not restore the original pre-irradiated structural state of the material. Our results further point to the potential of realizing radiation-hard photonic device designs taking advantage of the opposite signs of radiation-induced index changes in SiC and SiO2.
Photonics Research
2020, 8(2): 02000186
Author Affiliations
Department of Electronic Engineering, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
We demonstrate a soft lithography approach for fabrication of a topographically patterned polyvinyl alcohol (PVA) liquid-crystal (LC) alignment layer. This specific approach employs modified micromolding in capillaries for negative replication of the PVA microstructures on indium tin oxide (ITO) substrates from patterned poly(dimethylsiloxane) molds in a single step, leading to planar alignment on the desired regions. By doping with polyhedral oligomeric silsesquioxane nanoparticles, which can induce vertical alignment on bare ITO surfaces, periodic LC phase gratings based on an alternating vertical-aligned/hybrid-aligned nematic geometry are presented as an application, and a theoretical model was used to simulate and examine the experimental results.
160.3710 Liquid crystals 160.4670 Optical materials 160.5470 Polymers 050.1950 Diffraction gratings 
Chinese Optics Letters
2015, 13(8): 081603

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。